Skip to main content

Modulation and Repair of the Insect Blood-Brain Barrier

  • Chapter
Insect Neurochemistry and Neurophysiology · 1989 ·

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Abstract

Insects are unusual among invertebrate animals in possessing extremely effective blood-brain barrier systems (Abbott & Treherne, 1977; Lane & Treherne, 1981). The necessity for such protection of the neuronal microenvironment is generally supposed to result from the peculiar chemical composition of insect blood (cf. Treherne, 1985). In the more highly-evolved groups of insects, for example, the ionic concentration of the plasma is quite inappropriate for neuronal function, where high levels of potassium can greatly exceed those of sodium ions (cf. Florkin & Jeuniaux, 1974). Even in species such as the cockroach (Periplaneta americana) with ‘conventional’ — high-sodium — blood, there can be large fluctuations in the ionic composition of the plasma (Lettau et al., 1977). Furthermore, insect blood plasma often contains extremely high concentrations of amino acids (Wyatt, 1961; Florkin & Jeuniaux, 1974) — some of which are neuroactive (Iversen et al., 1975) — as well as toxins, such as nicotine which can be tolerated at high concentrations in the blood of the tobacco hornworm, Manduca sexta (Morris, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, N.J. & Treherne, J.E. (1977). Homeostasis of the brain microenvironment: a comparative account. In Transport of Ions and Water in Animals (eds. B.L. Gupta, R.B. Moreton, J.L. Oschman & B.J. Wall), pp.481–410. Academid Press: London.

    Google Scholar 

  • Adrian, E.K., Jr. & Schelper, R.L. (1981). Microglia monocytes and macrophages. In Glial and Neuronal Cell Biology, 11th International Congress of Anatomy, Par A (e. E.A. Vidrio & A. Federoff), pp.113–124. New York: A.R. Liss Inc.

    Google Scholar 

  • Benveniste, E.N., Merrill, J.E., Kaufman, S.E., Golde, D.W. & Gasson, J.C. (1985). Purification and characterization of a human T-lymphocyte-derived glial growth factor. Proc. natn. Acad. Sci. U.S.A. 82, 3930–3934.

    Article  CAS  Google Scholar 

  • Chiquet, M. & Acklin, S.E. (1986). Attachment to ConA or extracellular matrix initiates rapid sprouting by cultured leech neurons. Proc. natn. Acad. Sci. U.S.A. 83, 6188–6192.

    Article  CAS  Google Scholar 

  • Chiquet, M. & Nicholls, J.G. (1987). Neurite outgrowth and synapse formation by identified leech neurones in culture. J. exp. Biol. 132, 191–206.

    PubMed  CAS  Google Scholar 

  • Crone, C. & Oleson, S.P. (1982). Electrical resistance of brain microvascular epithelium. Brain Res. 241, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, A.P. & Evans, P.D. (1984). Stress-induced changes in the octopamine level of insect haemolymph. Insect Biochem. 14, 135–143.

    Article  CAS  Google Scholar 

  • DuBois, M., Bowman, P.D. & Goldstein, G.W. (1985). Cell proliferation after ischemic injury in gerbil brain. An immunocytochemical and autoradiographic study. Cell Tissue Res. 242, 17–23.

    CAS  Google Scholar 

  • Edgar, D. (1989). Neuronal laminin receptors. Trends Neurosci. 12, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Evans, P.D. (1985). Octopamine. In Comprehensive Insect Physiology, Biochemistry and Pharmacology 11 (eds. G.A. Kerkut & L.I. Gilbert), pp.499–530. Pergamon: Oxford.

    Google Scholar 

  • Florkin, M. & Jeauniaux, C. (1974). Haemolymph composition. In The Physiology of Insecta (ed. M. Rockstein), pp.356–307. Academic Press: New York.

    Google Scholar 

  • Fontana, A., Grieder, A., Arrenbrecht, St. & Grob, P. (1980). In vitro stimulation of glial cells by a lymphocyte-produced factor. J. neurolog. Sci. 45, 55–62.

    Article  Google Scholar 

  • Giulian, D., Allen, R.L., Baker, T.J. & Tomozawa, Y. (1986). Brain peptides and glial growth. I. Glial promoting factors as regulators of gliogenesis in the developing and injured central nervous system. J. Cell Biol. 102, 803–811.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D. & Baker, T.J. (1985). Peptides release by ameboid microglia regulate astroglial proliferation. J. Cell Biol. 101, 2411–2415.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., Tomozawa, Y., Hindman, H. & Allen, R.L. (1985). Peptides from regenerating central nervous system promote specific populations of microglia. Proc. natn. Acad. Sci. U.S.A. 82, 4287–4290.

    Article  CAS  Google Scholar 

  • Giulian, D. & Young, D.G. (1986). Brain peptides and glial growth. II. Identification of cells that secrete glial promoting factors. J. Cell Biol. 102, 812–820.

    Article  PubMed  CAS  Google Scholar 

  • Howes, E.A., Smith, P.J.S. & Treherne, J.E. (1987a). Glial repair in the cultured central nervous system of an insect. Cell Tissue Res. 247, 111–120.

    Article  Google Scholar 

  • Howes, E.A., Chain, B.M., Smith, P.J.S. & Treherne, J.E. (1987b). Blood cells contribute to glial repair in an insect. Tissue & Cell 19, 877–880.

    Article  CAS  Google Scholar 

  • Iversen, L.L., Iversen, S.D. & Snyder, S.H. (1975). Amino acid transmitters. Handbook of Psychopharmacology Vol.4. Plenum: New York.

    Google Scholar 

  • Lane, N.J. (1981). Invertebrate neuroglia: junctional structure and development. J. exp. Biol. 95, 7–33.

    Google Scholar 

  • Lane, N.J. (1985). Structure of components of taie nervous system. In Comprehensive Insect Physiology, Biochemistry and Pharmacology 5, (eds. G.A. Kerkut & L.I. Gilbert), pp.1–42. Pergamon: Oxford.

    Google Scholar 

  • Lane, N.J. & Treherne, J.E. (1981). Functional organization of arthropod neuroglia. In Insect Biology in the Future (eds. M. Locke & D.S. Smith), pp.765–795. Academic Press: London.

    Google Scholar 

  • Lettau, J., Foster, W.A., Harker, J.E. & Treherne, J.E. (1977). Diel changes in potassium activity in the haemolymph of the cockroach Leucophaea maderae. J. exp. Biol. 71, 171–186.

    CAS  Google Scholar 

  • Mirsky, R., Jessen, K.R., Schachner, M. & Goridis, C. (1986). Distribution of the adhesion molecules N-CAM and L1 on peripheral neurons and glia in adult rats. J. Neurocytol. 15, 799–815.

    Article  PubMed  CAS  Google Scholar 

  • Morris, C.A. (1977). Insect blood-brain barrier system: exchange, metabolism and neuropharmacology of noxious organic molecules. Ph.D. theses: University of Cambridge, U.K.

    Google Scholar 

  • Nelson, J.W. & Tinoco, I., Jr. (1984). Intercalation of ethidium bromide into DNA & RNA oligonucleotides. Biopolymers 23, 213–233.

    Article  PubMed  CAS  Google Scholar 

  • Perry, V.H., Hume, D.A. & Gordon, S. (1985).Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Rio-Hortega, P. del. (1932). Microglia. In Cytology and Cellular Pathology of the Nervous System, vol.2 (ed. W. Penfield), pp.481–584. New York: Paul B. Hocker.

    Google Scholar 

  • Schofield, P.K. (1987). Formamidine effects upon the glia that form the insect blood-brain barrier. Pesticide Biochem. & Physiol. 29, 152–156.

    Article  CAS  Google Scholar 

  • Schofield, P.K., Swales, L.S. & Treherne, J.E. (1984a). Potentials associated with the blood-brain barrier of an insect: recordings from identified neuroglia. J. exp. Biol. 109, 307–318.

    Google Scholar 

  • Schofield, P.K., Swales, L.S. & Treherne J.E. (1984b). Quantitative analysis of cellular and paracellular effects involved in disruption of the blood-brain barrier of an insect by hypertonic urea. J. exp. Biol. 109, 333–340.

    Google Scholar 

  • Schofiid, P.K. & Treherne, J.E. (1984). Localization of the blood-brain barrier of an insect: electrical model and analysis. J. exp. Biol. 109, 319–332.

    Google Scholar 

  • Schofield, P.K. & Treherne, J.E. (1985). Octopamine reduces potassium permeability of the glia that form the insect blood-brain barrier. Brain Res. 360, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, P.K. & Treherne, J.E. (1986). Octopamine sensitivity of the blood-brain barrier of an insect. J. exp. Biol. 123, 432–439.

    Google Scholar 

  • Smith, P.J.S., Howes, E.A., Leech, C.A. & Treherne, J.E. (1986). Haemocyte involvement in the repair of the insect central nervous system after selective glial disruption. Cell Tissue Res. 243, 367–374.

    Article  Google Scholar 

  • Smith, P.J.S. & Howes, E.A. (1987). Neural repair in an insect central nervous system. Cell Tissue Res. 247, 129–135.

    Article  Google Scholar 

  • Smith, P.J.S., Howes, E.A. & Treherne, J.E. (1987).Mechanisms of glial regeneration in an insect central nervous system. J. exp. Biol. 132, 59–78.

    PubMed  CAS  Google Scholar 

  • Smith, P.J.S., Howes, E.A. & Treherne, J.E. (1989).Gliogenesis in insect central nervous system repair; 5-Bromo-de-deoxyuridine incorporation in vivo. In preparation.

    Google Scholar 

  • Smith, P.J.S., Leech, C.A. & Treherne, J.E. (1984). Glial repair in an insect central nervous system: effects of selective glial disruption. J. Neuroscience. 4, 2698–2711.

    CAS  Google Scholar 

  • Treherne, J.E. (1985). Blood-brain barrier. In: Comprehensive Insect Biochemistry, Physiology and Pharmacology, vol.5, Nervous system: structure and motor function (eds. G.A. Kerkut & L.I. Gilbert, pp.115–158.

    Google Scholar 

  • Treherne, J.E., Harrison, J.B., Treherne, J.M. & Lane, N.J. (1984). Glial repair in an insect central nervous system: effects of surgical lesioning. J. Neurosci. 4, 2689–2697.

    PubMed  CAS  Google Scholar 

  • Treherne, J.E., Smith, P.J.S. & Edwards, H. (1987). Neural repair in an insect: cell recruitment and deployment following selective glial disruption. Cell Tissue Res. 247, 121–128.

    Article  Google Scholar 

  • Treherne, J.E. & Schofield, P.K. (1981). Mechanisms of ionic homeostasis in the central nervous system of an insect. J. exp. Biol. 95, 61–73.

    PubMed  CAS  Google Scholar 

  • Wyatt, G.R. (1961). The biochemistry of insect haemolymph. Ann. Rev. Entomol. 6, 75–102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 The Humana Press Inc.

About this chapter

Cite this chapter

Treherne, J.E., Howes, E.A., Schofield, P.K., Smith, P.J.S. (1990). Modulation and Repair of the Insect Blood-Brain Barrier. In: Borkovec, A.B., Masler, E.P. (eds) Insect Neurochemistry and Neurophysiology · 1989 ·. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-4512-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4512-4_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8854-1

  • Online ISBN: 978-1-4612-4512-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics