Skip to main content

What Happens Next?

A Hypothesis Linking the Biochemical and Electrophysiological Sequelae of alpha-2 Adrenergic Receptor Occupancy with the Diverse Receptor-Mediated Physiological Effects

  • Chapter
The alpha-2 Adrenergic Receptors

Part of the book series: The Receptors ((REC))

Abstract

The original intent of this chapter was to summarize the contents of the preceding chapters in this volume on alpha-2 adrenergic receptors and provide a prospectus for future studies. The thorough content of each of the chapters, however, makes a summary per se redundant. Instead, we wondered how we could make these chapters ”talk to” each other, since they deal with topics as diverse as receptor heterogeneity (Chapter 1) and structure (Chapter 2), mechanisms for coupling with components of the adenylate cyclase system (Chapter 3), and multiple expressions of physiological effects in normal (Chapter 4) and in altered (Chapter 5) physiological states. We decided to review briefly the biochemical and electrophysiological consequences of alpha-2 adrenergic receptor occupancy as a foundation for an hypothesis that integrates changes measured by the biochemist (Δcyclic AMP, Δ[Ca2+], and ΔpHi) with those measured by the electro-physiologist (ΔCa2+ and K+ conductances) and those measured by the cellular physiologist (stimulation or inhibition of secretion).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, J., Iyenger, R., and Birnbaumer, L. (1979) Guanyl nucleotide regulation of hormonally-responsive adenylyl cyclases. Mol. Cell. Endocrinol. 16, 129–146.

    PubMed  CAS  Google Scholar 

  • Aghajanian, G. K. and VanderMaelen, C. P. (1982) α2-Adrenoceptor-mediated hyperpolarization of locus ceruleus neurons: Intracellular studies in vivo. Science, 215 1394–1396.

    PubMed  CAS  Google Scholar 

  • Allgaier, C., Feuerstein, T. J., Jackisch, R., and Hertting, G. (1985) Islet-activating protein (pertussis toxin) diminishes α2-adrenoceptor-mediated effects on noradrenaline release. Naunyn Schmiedebergs Arch. Pharmacol. 331, 235–239.

    PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., Rink, T. J., and Tsien, R. Y. (1981) Free calcium ions in neurones of Helix aspersa measured with ion-selective micro-electrodes. J. Physiol. 315, 531–548.

    PubMed  CAS  Google Scholar 

  • Barish, M. E. and Baud, C. (1984) A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J. Physiol. 352, 243–263.

    CAS  Google Scholar 

  • Bohm, M., Bruckner, R., Newmann, J., Schmitz, W., Scholz, H., and Starbatty, J. (1986) Role of guanine nucleotide-binding protein in the regulation by adenosine of cardiac potassium conductance and force of contraction. Evaluation with pertussis toxin. Naunyn Schmiedebergs Arch. Pharmacol. 332, 403–405.

    PubMed  CAS  Google Scholar 

  • Brehm, P. and Eckert, R. O. (1978) Calcium entry leads to inactivation of calcium channels in Paramecium. Science. 202, 1203–1206.

    CAS  Google Scholar 

  • Breitwieser, G. G. and Szabo, G. (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analog. Nature 317, 536–540.

    Google Scholar 

  • Brown, D. A. and Caulfield, M. P. (1979) Hyperpolarizing ‘α2’-adrenoceptors in rat sympathetic ganglia. Br. J. Pharmacol. 65, 435–445.

    PubMed  CAS  Google Scholar 

  • Burgess, G. M., Claret, M., and Jenkinson, D. H. (1981) Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J. Physiol. 317, 67–90.

    PubMed  CAS  Google Scholar 

  • Byerly, L. and Moody, W. J. (1986) Membrane currents of internally perfused neurones of the snail, Lymnaea stagnalis, at low intracellular pH. J. Physiol. 376, 477–491.

    PubMed  CAS  Google Scholar 

  • Byerly, L., Meech, R., and Moody, W., Jr. (1984) Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J. Physiol. 351, 199–216.

    CAS  Google Scholar 

  • Calvete, J. A., Hayes, R. J., Oates, N. S., Sever, P. S., and Thorn, S (1984) α1-, and α2-, Adrenoceptor responses in human isolated arteries. Br. J. Pharmacol. 83, 364P.

    Google Scholar 

  • Cedarbaum, J. M. and Aghajanian, G. K. (1977) Catecholamine receptors on locus coeruleus neurons: Pharmacological characterization. Eur. J. Pharmacol. 44, 375–385.

    PubMed  CAS  Google Scholar 

  • Cole, A. E. and Shinnick-Gallagher, P. (1981) Comparison of the receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia. J. Pharm. Exp. Ther. 217, 440–444.

    CAS  Google Scholar 

  • Connolly, T. M. and Limbird, L. E. (1983) The influence of Na+ on the α2-adrenergic receptor system of human platelets. A. Method for removal of extraplatelet Na+. Effect of Na+ removal on aggregation, secretion and cyclic AMP accumulation. J. Biol. Chem. 258, 3907–3912.

    PubMed  CAS  Google Scholar 

  • Cook, D. L. and Perara, E. (1982) Islet electrical pacemaker response to alpha-adrenergic stimulation. Diabetes 31, 985–990.

    PubMed  CAS  Google Scholar 

  • Cook, D. L., Ikeuchi, M., and Fujimoto, W. Y. (1984) Lowering of pHi inhibits Ca++-activated K+ channels in pancreatic β-cells. Nature 311, 269–271.

    PubMed  CAS  Google Scholar 

  • Coore, H. G. and Randle, P. J. (1964) Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem. J. 83, 66–77.

    Google Scholar 

  • Dean, P. M. and Matthews, E. K. (1970) Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. 210, 255–264.

    PubMed  CAS  Google Scholar 

  • DeGroat, W. C. and Volle, R. L. (1966) The actions of the catecholamines on transmission in the superior cervical ganglion of the cat. J. Pharm. Exp. Ther. 154, 1–13.

    CAS  Google Scholar 

  • Delbeke, D., Scammell, J. G., Martinez-Campos, A., and Dannies, P. S. (1986) Dopamine inhibits prolactin release when cyclic adenosine 3′,5′-monophosphate levels are elevated. Endocrinology 218, 1271–1277.

    Google Scholar 

  • Deterre, P., Paupardin-Tritsch, D., Bockaert, J., and Gerschenfeld, H. M. (1982) Cyclic AMP-mediated decrease in K+ conductance evoked by serotonin and dopamine in the same neuron: A biochemical and physiological single-cell study. Proc. Natl. Acad. Sci. USA 79, 7934–7938.

    PubMed  CAS  Google Scholar 

  • DeWitt, L. M. and Putney, J. W. (1984) Alpha-adrenergic stimulation of potassium efflux in guinea pig hepatocytes may involve calcium influx and calcium release. J. Physiol. (Lond.) 346, 395–407.

    CAS  Google Scholar 

  • Dolphin, A. C. and Prestwich, S. A. (1985) Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316, 148–150.

    PubMed  CAS  Google Scholar 

  • Dorflinger, L. J. and Schonbrunn, A. (1983) Somatostatin inhibits basal and vasoactive intestinal peptide-stimulated hormone release by different mechanisms in GH pituitary cells. Endocrinology 113, 1551–1558.

    PubMed  CAS  Google Scholar 

  • Dunlap, K. and Fischbach, G. D. (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J. Physiol. 317, 519–535.

    PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. (1985) The physiological role of adenosine in the central nervous system. International review. Neurobiology 27, 63–139.

    PubMed  CAS  Google Scholar 

  • Eccles, R. M. and Libet, B. (1961) Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. 157, 484–503.

    PubMed  CAS  Google Scholar 

  • Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M., and Selinger, Z. (1979) Guanosine 5′-0-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J. Biol. Chem. 254, 9829–9834.

    PubMed  CAS  Google Scholar 

  • Eddlestone, G. T. and Beigelman, P. M. (1983) Pancreatic β-cell electrical activity: The role of anions and the control of pH. Am. J Physiol. 255, C188-C197.

    Google Scholar 

  • Egan, T. M. and North, R. A. (1986) Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor. Nature 319, 405–407.

    PubMed  CAS  Google Scholar 

  • Egan, T. M., Henderson, G., North, R. A., and Williams, J. T. (1983) Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurons. J. Physiol. 345, 477–488.

    PubMed  CAS  Google Scholar 

  • Endoh, M., Maruyama, M., and Iijima, T. (1985) Attenuation of muscarinic cholinergic inhibition by islet-activating protein in the heart. Am. J. Physiol. 249, H309–H320.

    PubMed  CAS  Google Scholar 

  • Epel, D. (1978) Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr. Topics Dev. Biol. 12, 185–245.

    CAS  Google Scholar 

  • Exton, J. H. (1985) Mechanisms involved in α-adrenergic phenomena. Am. J. Physiol. 248, E633-E647.

    PubMed  CAS  Google Scholar 

  • Field, M., Sheerin, H. E., Henderson, A., and Smith, P. L. (1975) Catecholamine effects on cyclic AMP levels and ion secretion in rabbit ileal mucosa. Am. J. Physiol. 229, 86–92.

    PubMed  CAS  Google Scholar 

  • Finkleman, B. (1930) On the nature of inhibition in the intestine. J. Physiol. 70, 145–157.

    PubMed  CAS  Google Scholar 

  • Galvan, M. and Adams, P. R. (1982) Control of calcium current in rat sympathetic neurons by norepinephrine. Brain Res. 244, 135–144.

    PubMed  CAS  Google Scholar 

  • Gamundi, S. S., Scheucher, A., and Coviello, A. (1986) Alpha-2 adrenergic agonists inhibit basal and stimulated osmotic water permeability in toad skin. Comp. Biochem. Physiol. 84C, 199–203.

    CAS  Google Scholar 

  • Gilman, A. G. (1984) G Proteins and dual control of adenylate cyclase. Cell 36, 577–579.

    PubMed  CAS  Google Scholar 

  • Guyenet, P. G. and Cabot, J. B. (1981) Inhibition of sympathetic preganglionic neurons by catecholamines and Clonidine: Mediation by an α-adrenergic receptor. J. Neurosci. 1, 908–917.

    PubMed  CAS  Google Scholar 

  • Hatayama, K., Kambayashi, J., Nakamura, K., Ohshiro, T., and Mori, T. (1985) Fluorescent Ca2+-indicator quin 2 as an intracellular Ca2+-antagonist in platelet reaction. Thrombosis Res. 38, 505–512.

    CAS  Google Scholar 

  • Henley, J. M. (1985) Epinephrine-stimulated maintained rubidium efflux from guinea pig hepatocytes may involve α1-and α2-adrenoceptors. Mol. Pharmacol. 28, 431–135.

    PubMed  CAS  Google Scholar 

  • Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G. (1986) N-Protein-mediated inhibitory effect of opioids on voltage-dependent calcium channels in neuroblastoma x glioma hybrids. Presented at the VIth international Conference on Cyclic Nucleotides, Calcium and Protein Phosphorylation. Abstract.

    Google Scholar 

  • Hirst, G. D. S. and Silinsky, E. M. (1975) Some effects of 5-hydroxytryptamine, dopamine and noradrenaline on neurones in the submucous plexus of guinea-pig small intestine. J. Physiol. 251, 817–832.

    PubMed  CAS  Google Scholar 

  • Holz, G. G., Kream, R. M., and Dunlap, K. (1986a) Bordatella pertussis toxin-sensitive GTP-binding proteins couple alpha-2 adrenergic and GABA-B receptors to inhibition of neurosecretion in chick dorsal root ganglion neurons. Presented at the VIth International Conference on Cyclic Nucleotides, Calcium and Protein Phosphorylation. Abstract.

    Google Scholar 

  • Holz, G. G., Rane, S. G., and Dunlap, K. (1986b) GTP-binding proteins mediate transmitter inhibition of voltage-dependent Ca++ channels. Nature 319, 670–672.

    PubMed  CAS  Google Scholar 

  • Horn, J. P. and McAfee, D. A. (1979) Norepinephrine inhibits calcium-dependent potentials in rat sympathetic neurons. Science 204, 1233–1235.

    PubMed  CAS  Google Scholar 

  • Horn, J. P. and McAfee, D. A. (1980) Alpha-adrenergic inhibition of calcium-dependent potentials in rat sympathetic neurons. J. Physiol. 301, 191–204.

    PubMed  CAS  Google Scholar 

  • Isom, L. L., Cragoe, E. J., Jr., and Limbird, L. E. (1987a) Alpha2-adrenergic receptors accelerate Na+/H+ exchange in neuroblastoma glioma hybrid cells. J. Biol Chem. 262, 6750–6757.

    PubMed  CAS  Google Scholar 

  • Isom, L. L., Cragoe, E. J., Jr., and Limbird, L. E. (1987b) Receptors linked to inhibition of adenylate cyclase accelerate Na+/H+ exchange in neuroblastoma x glioma cells via a mechanism other than decreases in cAMP. J. Biol Chem., in press.

    Google Scholar 

  • Israel, J. M., Jaquet, P., and Vincent, J. D. (1985) The electrical properties of isolated human prolactin-secreting adenoma cells and their modification by dopamine. Endocrinology 117, 1448–1455.

    PubMed  CAS  Google Scholar 

  • Iwatsuki, N. and Petersen, O. H. (1985) Inhibition of Ca2+-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochim. Biophys. Acta 819, 249–257.

    PubMed  CAS  Google Scholar 

  • Johnson, J. D., Epel, D., and Paul, M. (1976) Intracellular pH and the activation of sea urchin eggs after fertilization. Nature 262, 661–664.

    PubMed  CAS  Google Scholar 

  • Johnson, P. C., Cliveden, P., Smith, M., Lall, P., and Salzman, E. W. (1983) Measurement of cytoplasmic ionized calcium in platelets with the photoprotein aequorin: Comparison with quin 2. Blood 62, 939A.

    Google Scholar 

  • Johnson, P. C, Ware, J. A., Cliveden, P. B., Smith, M., Dvorak, A. M, and Salzman, E. W. (1985) Measurement of ionized calcium in blood platelets with the photoprotein aequorin. Comparison with quin 2. J. Biol. Chem. 260, 2069–2076.

    PubMed  CAS  Google Scholar 

  • Kerry, R. and Scrutton, M. C. (1985) Platelet Adrenoceptors, in The Platelets: Physiology and Pharmacology (Longenecker, G. L., ed.) Academic, Florida.

    Google Scholar 

  • Koch, B. D., Dorflinger, L. J., and Schonbrunn, A. G. (1985) Pertussis toxin blocks both cyclic AMP-mediated and cyclic AMP-independent actions of somatostatin. Evidence for coupling to decreases in intracellular free calcium. J. Biol Chem. 260, 13138–13145.

    PubMed  CAS  Google Scholar 

  • Latorre, R. and Miller, C. (1983) Conduction and selectivity in potassium channels. J. Membrane Biol. 71, 11–30.

    CAS  Google Scholar 

  • Lewis, D. L., Weight, F. F., and Luini, A. (1986) A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc. Natl. Acad. Sci. USA 83, 9035–9038.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E. (1981) Activation and attenuation of adenylate cyclase: GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem. J. 195, 1–13.

    PubMed  CAS  Google Scholar 

  • Limbird, L. E. and Sweatt, J. D. (1985) α2-Adrenergic Receptors: Apparent Interaction with Multiple Effector Systems, in The Receptors II (Conn, P. M., ed.) Academic, Florida.

    Google Scholar 

  • Luini, A., Lewis, D., Guild, S., Schofield, G., and Weight, F. (1986) Somatostatin, an inhibitor of ACTH secretion, decreases cytosolic free calcium and voltage-dependent calcium current in a pituitary cell line. J. Neurosci. 6, 3128–3132.

    PubMed  CAS  Google Scholar 

  • Lundberg, A. (1952) Adrenaline and transmission in the sympathetic ganglion of the cat. Acta Physiolog. Scand. 26, 252–263.

    CAS  Google Scholar 

  • Malaisse, W. J., Brisson, G., and Malaisse-Lagae, F. (1970) The stimulus-secretion coupling of glucose-stimulated insulin release. I. Interaction of epinephrine and alkaline earth cations. J. Lab. Clin. Med. 76, 895–902.

    PubMed  CAS  Google Scholar 

  • Marrazzi, A. S. (1939a) Adrenergic inhibition at sympathetic synapses. Am. J. Physiol. 12, 738–744.

    Google Scholar 

  • Marrazzi, A. S. (1939b) Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (epinephrine) on sympathetic ganglia. J. Pharmacol. Exp. Ther. 65, 395–404.

    CAS  Google Scholar 

  • Meech, R. W. (1979) Membrane potential oscillations in molluscan “burster” neurons. J. Exp. Biol. 81, 93–112.

    PubMed  CAS  Google Scholar 

  • Miller, V. M. and Vanhoutte, P. M. (1985) Endothelial α2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur. J. Pharmacol. 118, 123–129.

    PubMed  CAS  Google Scholar 

  • Moody, W., Jr. (1984) Effects of intracellular H+ on the electrical properties of excitable cells. Ann. Rev. Neurosci. 7, 257–278.

    PubMed  Google Scholar 

  • Morita, K. and North, R. A. (1981) Clonidine activates membrane potassium conductance in myenteric neurones. Br. J. Pharmacol. 74, 419–428.

    PubMed  CAS  Google Scholar 

  • Motulsky, H. J., Shattil, S. J., Ferry, N., Rozansky, D., and Insel, P. A. (1986) Desensitization of epinephrine-initiated platelet aggregation does not alter binding to the alpha-2 adrenergic receptor or receptor coupling to adenylate cyclase. Mol. Pharmacol. 29, 1–8.

    PubMed  CAS  Google Scholar 

  • Nakaki, T., Nakadate, T., Yamamoto, S., and Kato, R. (1982) Alpha-2 adrenergic inhibition of intestinal secretion induced by prostaglandin E1, vasoactive intestinal peptide and dibutyryl cyclic AMP in rat jejunum. J. Pharmacol Exp. Ther. 220, 637–641.

    PubMed  CAS  Google Scholar 

  • Nakaki, T., Nakadate, T., Yamamoto, S., and Kato, R. (1983a) Alpha-2 adrenergic receptors in intestinal epithelial cells, identification by 3H-yohimbine and failure to inhibit cyclic AMP accumulation. Mol. Pharmacol. 23, 228–234.

    PubMed  CAS  Google Scholar 

  • Nakaki, T., Nakadate, T., Yamamoto, S., and Kato, R. (1983b) Inhibition of dibutyryl cyclic AMP-induced insulin release by alpha-2 adrenergic stimulation. Life Sci. 32, 191–195.

    PubMed  CAS  Google Scholar 

  • Nakamura, K., Kambayashi, J., Suga, K., Hakata, H., and Mori, T. (1985) Hydrolysis of polyphosphoinositides in human platelets. Thrombosis Res. 38, 513–525.

    CAS  Google Scholar 

  • Nargeot, J., Nerbonne, J. M., Engels, J., and Lester, H. A. (1983) Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cyclic AMP. Proc. Natl. Acad. Sci. USA. 80, 2395–2399.

    PubMed  CAS  Google Scholar 

  • Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J. Biol. Chem. 259, 14222–14229.

    PubMed  CAS  Google Scholar 

  • North, R. A. (1986) Muscarinic receptors and membrane ion conductances. Trends Pharmacol. Sci. February suppl., 19–22.

    Google Scholar 

  • North, R. A. and Surprenant, A. (1985) Inhibitory synaptic potentials resulting from α2-adrenoceptor activation in guinea-pig submucous plexus neurones. J. Physiol. 358, 17–33.

    PubMed  CAS  Google Scholar 

  • North, R. A. and Yoshimura, M. (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J. Physiol. 349, 43–55.

    CAS  Google Scholar 

  • Oberleithner, H., Munich, G., Schwab, A., and Dietl, P. (1986) Amiloride reduces potassium conductance in frog kidney via inhibition of Na+/H+ exchange. Am. J. Physiol. 251, F66-F73.

    PubMed  CAS  Google Scholar 

  • Owen, N. E. and LeBreton, G. C. (1981) Ca2+ Mobilization in blood platelets as visualized by Chlortetracycline fluorescence. Am. J. Physiol. 241, H613–619.

    PubMed  CAS  Google Scholar 

  • Pace, C. S., Murphy, M., Conant, S., and Lacy, P. E. (1977) Somatostatin inhibition of glucose-induced electrical activity in cultured rat islet cells. Am. J. Physiol. 233, C164-C171.

    CAS  Google Scholar 

  • Pace, C. S., Travin, J. T., and Smith, J. S. (1983) Stimulus-secretion coupling in β-cells: Modulation by pH. Am. J. Physiol. 244, E3-E18.

    PubMed  CAS  Google Scholar 

  • Petersen, K. U., Wehner, F., and Winterhager, J. M. (1985) Na/H Exchange at the apical membrane of guinea-pig gallbladder epithelium: Properties and inhibition by cyclic AMP. Pflugers Arch. 405 (suppl. 1), 5115–5120.

    Google Scholar 

  • Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Nathanson, N. M., and Hille, B. (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K+ channel. Nature 317, 536–538.

    PubMed  CAS  Google Scholar 

  • Pollock, A. S., Warnock, D. G., and Strewler, G. J. (1986) Parathyroid hormone inhibition of Na+-H+ antiporter activity in a cultured renal cell line. Am. J. Physiol. 250, F217–F225.

    PubMed  CAS  Google Scholar 

  • Porte, D., Jr., Graber, A. L., Kuzuya, T., and Williams, R. H. (1966) The effect of epinephrine on immunoreactive insulin levels in man. J. Clin. Invest. 45, 228–236.

    PubMed  CAS  Google Scholar 

  • Rao, G. H. R., Peller, J. D., and White, J. G. (1985) Measurement of ionized calcium in blood platelets with a new generation calcium indicator. Biochem. Biophys. Res. Comm. 132, 652–657.

    PubMed  CAS  Google Scholar 

  • Rao, G. H. R., Peller, J. D., Semba, C. P., and White, J. G. (1986) Influence of the calcium-sensitive fluorophore, quin 2, on platelet function. Blood 67, 354–361.

    PubMed  CAS  Google Scholar 

  • Reuss, L. and Petersen, K. U. (1985) Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 85, 409–429.

    PubMed  CAS  Google Scholar 

  • Reuter, H. (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301, 569–574.

    PubMed  CAS  Google Scholar 

  • Reuter, H., Kokubun, S., and Prodhom, B. (1986) Properties and modulation of cardiac calcium channels. J. Exp. Biol. 124, 191–201.

    CAS  Google Scholar 

  • Rink, T. J., Smith, S. W., and Tsien, R. Y. (1982) Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion. FEBS Lett. 148, 21–26.

    PubMed  CAS  Google Scholar 

  • Sakmann, B., Noma, A., and Trautwein, W. (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of that mammalian heart. Nature 303, 250–253.

    PubMed  CAS  Google Scholar 

  • Santana de Sa, S. and Atwater, I. (1980) Adrenaline and noradrenalin inhibition of glucose-induced electrical activity by calcium-activated potassium permeability in mouse β-cells. Diabetologia 19, 312. Abstract.

    Google Scholar 

  • Schlegel, W., Wuarin, F., Wollheim, C. B., and Zahnd, G. R. (1984) Somatostatin lowers the cytosolic free Ca2+ concentration in colonal rat pituitary cells (GH3 cells). Cell Calcium 5, 223–236.

    PubMed  CAS  Google Scholar 

  • Schlegel, W., Wuarin, F., Zbaren, C, Wollheim, C. G., and Zahnd, G. R. (1985) Pertussis toxin selectively abolishes hormone induced lowering of cytosolic calcium in GH3 cells. FEBS Lett. 189, 27–32.

    PubMed  CAS  Google Scholar 

  • Schoffelmeer, A. N. M. and Mulder, A. H. (1983) 3H-Noradrenaline release from rat neocortical slices in the absence of extracellular Ca++ and its presynaptic alpha-2 adrenergic modulation. Naunyn Schmiedebergs Arch. Pharmacol. 323, 188–192.

    PubMed  CAS  Google Scholar 

  • Schoffelmeer, A. N. M. and Mulder, A. H. (1984) Presynaptic opioid receptor and- α2-adrenoceptor-mediated inhibition of noradrenaline release in the rat brain: Role of hyperpolarization? Eur. J. Pharmacol. 105, 129–135.

    PubMed  CAS  Google Scholar 

  • Shen, S. S. and Steinhardt, R. A. (1979) Intracellular pH and the sodium requirement at fertilization. Nature 282, 87–89.

    PubMed  CAS  Google Scholar 

  • Shen, S. S. and Steinhardt, R. A. (1980). Intracellular pH controls the development of new potassium conductance after fertilization of the sea urchin Egg. Exp. Cell. Res. 125, 55–61.

    PubMed  CAS  Google Scholar 

  • Silinsky, E. M. (1986) Inhibition of transmitter release by adenosine: Are Ca++ currents depressed or are the intracellular effects of Ca++ impaired? Trends Pharmacol. Sci. 7, 180–185.

    CAS  Google Scholar 

  • Soejima, M. and Noma, A. (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch. 400, 424–431.

    PubMed  CAS  Google Scholar 

  • Steinhardt, R. A. and Mazia, D. (1972) Development of K+-Conductance and Membrane potentials in unfertilized sea urchin eggs after exposure to NH4OH. Nature 241, 400–401.

    Google Scholar 

  • Steinhardt, R. A., Shen, S., and Mazia, D. (1972) Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm eggs. Exp. Cell Res. 72, 195–203.

    PubMed  CAS  Google Scholar 

  • Stjarne, L. (1978) Commentary. Facilitation and receptor-mediated regulation of noradrenaline secretion by control of recruitment of varicosities as well as by control of electro-secretory coupling. Neuroscience 3, 1147–1155.

    PubMed  CAS  Google Scholar 

  • Stjarne, L. (1979) Presynaptic α-receptors do not depress the secretion of 3H-noradrenaline induced by veratridine. Acta Physiol. Scand. 106, 379–380.

    PubMed  CAS  Google Scholar 

  • Strandhoy, J. W. (1985) Role of alpha-2 receptors in the regulation of renal function. J. Cardiovasc. Pharmacol. 7 (suppl. 8), S28–S33.

    PubMed  CAS  Google Scholar 

  • Strong, J. A. and Kaczmarek, L. K. (1986) Multiple components of delayed potassium current in peptidergic neurons of Aplysia: Modulation by an activator of adenylate cyclase. J. Neurosci. 6, 814–822.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D., Blair, I. A., Cragoe, E. J., and Limbird, L. E. (1986a) Inhibitors of Na+/H+ exchange block epinephrine-and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J. Biol. Chem. 261, 8660–8666.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D., Connolly, T. M., Cragoe, E. J., and Limbird, L. E. (1986b) Evidence that Na+/H+ exchange regulates receptor-mediated phospholipase A2 activation in human platelets. J. Biol. Chem. 261, 8667–8673.

    PubMed  CAS  Google Scholar 

  • Sweatt, J. D., Johnson, S. L., Cragoe, E. J., Jr., and Limbird, L. E. (1985) Inhibitors of Na+/H+ exchange block stimulus-provoked arachidonic acid release in human platelets. J. Biol. Chem. 260, 12910–12919.

    PubMed  CAS  Google Scholar 

  • Thomas, R. C. and Meech, R. W. (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299, 826–828.

    PubMed  CAS  Google Scholar 

  • Tillotson, D. (1979) Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc. Natl. Acad. Sci. USA 76, 1497–1500.

    PubMed  CAS  Google Scholar 

  • Trautwein, W., Taniguichi, J., and Noma, A. (1982) The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflugers Arch. 392, 307–314.

    PubMed  CAS  Google Scholar 

  • Ui, M. (1984) Islet-activating protein, pertussis toxin: A probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol. Sci. 5, 277–279.

    CAS  Google Scholar 

  • Ullrich, S. and Wollheim, C. B. (1984) Islet cyclic AMP levels are not lowered during alpha2-adrenergic inhibition of insulin release. Studies with epinephrine and forskolin. J. Biol. Chem. 259, 4111–4115.

    PubMed  CAS  Google Scholar 

  • Ullrich, S. and Wollheim, C. B. (1985) Expression of both α1 - and α2-adrenoceptors in an insulin-secreting cell line. Mol. Pharmacol. 28, 100–106.

    PubMed  CAS  Google Scholar 

  • Umbach, J. A. (1982) Changes in intracellular pH affect calcium currents in Paramecium caudatum. Proc. R. Soc. Lond. B 216, 209–224.

    PubMed  CAS  Google Scholar 

  • Wanke, E., Carbone, E., and Testa, P. L. (1979) K+ Conductance modified by a titratable group accessible to protons from the intracellular side of the squid axon membrane. Biophys. J. 26, 319–324.

    PubMed  CAS  Google Scholar 

  • Ware, J. A., Johnson, P. C, Smith, M., and Salzman, E. W. (1984) The effect of common agonists on localized and diffuse (Ca++) in platelets. Blood 64, 919A.

    Google Scholar 

  • Ware, J. A., Johnson, P. C, Smith, M., and Salzman, E. W. (1985) Platelet cytosolic calcium measurement and quin 2: Correlation with aggregation and ATP secretion. Clin. Res. 33, 552A.

    Google Scholar 

  • Werz, M. A. and MacDonald, R. L. (1982) Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for μ-and δ-opiate receptors. Nature 299, 730–733.

    PubMed  CAS  Google Scholar 

  • Werz, M. A. and MacDonald, R. L. (1983a) Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J. Pharmacol. Exp. Ther. 227, 394–401.

    PubMed  CAS  Google Scholar 

  • Werz, M. A. and MacDonald, R. L. (1983b) Opioid peptides selective for mu- and delta-opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci. Lett. 42, 173–178.

    PubMed  CAS  Google Scholar 

  • Werz, M. A. and MacDonald, R. L. (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration. J. Pharmacol. Exp. Ther. 234, 49–56.

    PubMed  CAS  Google Scholar 

  • Williams, J. T. and North, R. A. (1985) Catecholamine inhibition of calcium action potentials in rat locus coeruleus neurones. Neuroscience 14, 103–109.

    PubMed  CAS  Google Scholar 

  • Williams, J. T., Henderson, G., and North, R. A. (1985) Characterization of α2-adrenoceptors which increase potassium conductance in rat locus ceruleus neurones. Neuroscience 14, 95–101.

    PubMed  CAS  Google Scholar 

  • Wollheim, C. B., Kikuchi, M., Renold, A. E., and Sharp, G. W. G. (1977) Somatostatin- and epinephrine-induced modifications of 45Ca++ fluxes and insulin release in rat pancreatic islets maintained in tissue culture. J. Clin. Invest. 60, 1165–1173.

    PubMed  CAS  Google Scholar 

  • Zucker, R. S. (1981) Cytoplasmic alkalinization reduces calcium buffering in molluscan central neurons. Brain Res. 225, 155–170.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this chapter

Cite this chapter

Isom, L.L., Limbird, L.E. (1988). What Happens Next?. In: Limbird, L.E. (eds) The alpha-2 Adrenergic Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-4612-4596-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4596-4_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8942-5

  • Online ISBN: 978-1-4612-4596-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics