Skip to main content

Baroclinic Theories of the Wind Driven Circulation

  • Chapter
General Circulation of the Ocean

Part of the book series: Topics in Atmospheric and Oceanic Sciences ((TATM))

Abstract

This article reviews, some idealized baroclinic theories of the wind driven ocean circulation. The two layer quasigeostrophic model, where the layers represent the upper thermocline waters rather than the full depth of the ocean, is used throughout. The emphasis is on interior solutions and the role of mesoscale eddies. Western boundary layers, which close the flow patterns, are ignored. This heavily idealized model is a convenient expository vehicle for important concepts which re-emerge in more complicated multilayer (and continuously stratified), nonquasigeostrophic theories.

Sections 1 and 2 give a brief review of the scaling arguments and physical assumptions which are used to simplify the equations of motion. Section 1 shows how rapid rotation ensures vertical velocities are much smaller than naive scale analysis of the mass conservation equation suggests. This is responsible for a major simplification: vortex tilting and twisting cannot effectively produce vertical vorticity. Hence the privileged position of vertical vorticity in the theory of rapidly rotating fluids. Section 2 develops the two layer model and potential vorticity dynamics. Tractable models are obtained by simplifying the potential vorticity equation using one of two complementary approximations: quasigeostrophy or planetary geostrophy. A particular example, the propagation of a long nonlinear baroclinic Rossby wave, is used to illustrate the connection between these approximations.

Section 3 introduces the concept of a geostrophic contour. In the absence of forcing and dissipation fluid cannot cross geostrophic contours. Thus the geometry of geostrophic contours (closed, blocked by eastern boundaries, impinging on the base of the mixed layer) constrains the fluid motion. This is illustrated with two examples: flow around topographically closed contours in a one layer model and closure of the lower layer geostrophic contours in a two layer model. In both these examples the ideal fluid equations have an infinite number of solutions and it is necessary to consider the effects of small dissipation to select a unique one. Different types of dissipation select different solutions from the infinity admitted by the ideal fluid equations.

Section 4 and 5 take up this last point. In section 4 it is argued that the mesoscale eddy field is the dominant dissipation mechanism which retards the large scale wind driven flow. Its mean field effect is plausibly a down-gradient flux of potential vorticity. Section 5 uses an extension of the Prandtl-Batchelor theorem to conclude that this downgradient flux leads to the expulsion of potential vorticity gradients from closed geostrophic contours. Thus lateral diffusion of potential vorticity has selected a solution in which the potential vorticity is homogenized inside closed geostrophic contours. This selection principle allows us to construct a complete picture of the baroclinic circulation in the Sverdrup Interior.

It is emphasized, using passive scalar advection-diffusion models, that homogenization occurs only if diffusion is weak. Thus the term “potential vorticity mixing” is misleading when applied to homogenization since it has the erroneous connotation that the stronger the diffusivity the more homogeneous the potential vorticity. These passive scalar problems also allow one to examine the departures from the homogenized state. These corrections are exponentially small with distance from the nonhomogeneous region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. L. T. and A. E. Gill, 1975. Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res., 22, 583–596.

    Google Scholar 

  • Anderson, D. L. T. and P. D. Killworth, 1977. Spin-up of a stratified ocean with topography. Deep-Sea Res., 24, 709–732.

    Article  Google Scholar 

  • Anderson, D. L. T. and P. D. Killworth, 1979. Nonlinear propagation of long Rossby waves. Deep-Sea Res., 26A, 1033–1050.

    Article  Google Scholar 

  • Batchelor, G. K., 1956. On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech., 1, 177–190.

    Article  Google Scholar 

  • Batchelor, G. K., Howells, I. D. and A. A. Townsend, 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. J. Fluid Mech., 5, 134–139.

    Article  Google Scholar 

  • Batchelor, G. K., 1969. Computation of the energy spectrum in homogenous two-dimensional turbulence. Phys. Fluids, (Suppl. II), 12, 233–238.

    Google Scholar 

  • Behringer, D. W. and H. Stommel, 1980. The beta spiral in the North Atlantic subtropical gyre. Deep-Sea Res., 27A, 225–288.

    Article  Google Scholar 

  • Bleck, R. and D. B. Boudra, 1981. Initial testing of a numerical ocean circulation model using a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11, 755–770.

    Article  Google Scholar 

  • Charney, J. G. and G. R. Flierl, 1981. Oceanic analogues of atmospheric motions. In: Evolution of Physical Oceanography, ed., Warren and Wunsch. MIT press.

    Google Scholar 

  • de Verdiere, A. C., 1980. Quasi-geostrophic turbulence in a rotating homogeneous fluid. Geophys. Astrophys. Fluid Dyn., 15, 213–251.

    Article  Google Scholar 

  • Dewar, W. K., P. B. Rhines and W. R. Young, 1983. The nonlinear spin-up of a stratified ocean. Geophys. Astrophys. Fluid Dyn., 30, 169–197.

    Article  Google Scholar 

  • Fu, L. -L. and G. R. Flierl, 1980. Nonlinear energy and enstrophy transfer in a realistically stratified ocean. Dyn. of Atm. and Oceans, 4, 219–246.

    Article  Google Scholar 

  • Fu, L. -L., T. Keffer, P. P. Niiler, and C. Wunsch, 1982. Observations of mesoscale variability in the western North Atlantic: A comparative study. J. Mar. Res., 40, 809–848.

    Google Scholar 

  • Gill, A. E., G. S. A. Greene and A. G. Simmons, 1974. Energy partition in the large scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499–528.

    Google Scholar 

  • Gill, A. E., 1982. Atmosphere - Ocean Dynamics. Academic Press. 662 pp.

    Google Scholar 

  • Gill, A. E., 1974. The stability of planetary waves on an infinite beta - plane. Geophys. Astrophys. Fluid Dyn., 6, 29–47.

    Article  Google Scholar 

  • Haynes, P., 1982. Models of large scale flows with relevance to southern ocean circulation. J. Phys. Oceanogr., 75, 670–683.

    Google Scholar 

  • Holland, W. R., 1978. the role of eddies in the general circulation of the ocean - numerical experiments using a wind-driven quasigeostrophic model. J. Phys. Oceanogr., 8, 363–392.

    Article  Google Scholar 

  • Holland, W. R. and P. B. Rhines, 1980. An example of eddy induced circulation. J. Phys. Oceanogr., 10, pp. 1010–1031.

    Article  Google Scholar 

  • Holland, W. R., 1983. Regions of uniform potential vorticity in an ocean circulation model with mesoscale resolution, (in prep.)

    Google Scholar 

  • Howells, I. D., 1960. An approximate equation for the spectrum of a conserved scalar quantity in a turbulent fluid. J.Fluid Mech., 9, 104–106.

    Article  Google Scholar 

  • Ierley, G. R. and W. R. Young, 1983. Can the western boundary layer affect the potential vorticity distribution in the Sverdrup interior of a wind gyre? J. Phys. Oceanogr., 13, 1753–1763.

    Article  Google Scholar 

  • Jenkins, W. J., 1980. Tritium and 3 He in the Sargasso Sea. J. Mar. Res., 38, 533–569.

    Google Scholar 

  • Keffer, T., 1983. The baroclinic instability of the Atlantic North Equatorial current. J. Phys. Oceanogr. (in press).

    Google Scholar 

  • Lighthill, M. J., 1967. On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids. J. Fluid Mech., 21, 725–752.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. and A. E. Gill, 1967. Resonant interactions between planetary waves. Proc. Roy. Soc. Lond. A, 299, 120–140.

    Article  Google Scholar 

  • Lorenz, E. N., 1972. Barotropic instability of Rossby wave motion. J. Atmos. Sci., 29, 258–269.

    Article  Google Scholar 

  • Luyten, J. R., J. Pedlosky and H. Stommel, 1983. The ventilated thermo- cline. J. Phys. Oceanogr., 13, 292–309.

    Article  Google Scholar 

  • McDowell, S., P. B. Rhines and T. Keffer, 1982. North Atlantic potential vorticity and its relation to the general circulation. J. Phys. Oceanogr., 12, 1417–1436.

    Article  Google Scholar 

  • McWilliams, J. C. and J. H. S. Chow, 1981. Equilibrium geostrophic turbulence I: A reference solution in a β-place channel. J. Phys. Oceanogr., 11, 921–949.

    Article  Google Scholar 

  • Moffatt, H. K., 1978. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press. 341 pp.

    Google Scholar 

  • Moffatt, H. K., 1981. Some developments in the theory of turbulence. J. Fluid Mech., 106, 21–41.

    Article  Google Scholar 

  • Müller, P. and C. Frankignoul, 1981. Direct atmospheric forcing of geostrophic eddies. J. Phys. Oceanogr., 11, 287–308.

    Article  Google Scholar 

  • Pedlosky, J., 1962. Spectral considerations in two-dimensional incompressible flow. Tellus, 14, 125–132.

    Article  Google Scholar 

  • Pedlosky, J., 1977. On the radiation of meso-scale energy in the mid- ocean. Deep-Sea Res., 24, 591–600.

    Article  Google Scholar 

  • Pedlosky, J., 1979. Geophysical Fluid Dynamics. Springer-Verlag. 624 pp.

    Google Scholar 

  • Rhines, P. B., 1975. Waves and turbulence on a beta plane. J. Fluid Mech., 69, 417–443.

    Article  Google Scholar 

  • Rhines, P. B., 1977. The dynamics of unsteady currents. In: The Sea Vol. VI, E. Goldberg (ed.), pp 189–318. Wiley.

    Google Scholar 

  • Rhines, P. B., 1983. Gyration. Ocean Modelling 44.

    Google Scholar 

  • Rhines, P. B. and W. R. Holland, 1979. A theoretical discussion of eddy driven mean flows. Dyn. of Aim. and Oceans, 3. 289–325.

    Article  Google Scholar 

  • Rhines, P. B. and W. R. Young, 1982a. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347–367.

    Article  Google Scholar 

  • Rhines, P. B. and W. R. Young, 1982b. A theory of the wind-driven circulation. I. Mid-ocean gyres. J. Mar. Res., 40 (supplement), 559–596.

    Google Scholar 

  • Rhines, P. B. and W. R. Young, 1983. How rapidly is passive scalar mixed within closed streamlines? Fluid Mech., 133, 133–145.

    Article  Google Scholar 

  • Robinson, A. R., 1983 (ed.). Eddies in Marine Science, Springer-Verlag, 609 pp.

    Google Scholar 

  • Rooth, C, H. M. Stommel and G. Veronis, 1978. On motion in steady layered geostrophic models. J. Oceanogr. Soc. Japan, 34, 265–267.

    Article  Google Scholar 

  • Rose, H. A., 1977. Eddy diffusivity, eddy noise and subgrid-scale modelling. J. Fluid Mech., 81, 719–734.

    Article  Google Scholar 

  • Sarmiento, J. L., C. G. H. Rooth and W. Roether, 1982. The North Atlantic tritium distribution in 1972. J. Geophys. Res., 87, no. C10, 8047–8056.

    Article  Google Scholar 

  • Schmitz, W. J., 1978. Observations of the vertical distribution of low frequency kinetic energy in the western North Atlantic. J. Mar. Res., 36, 295–310.

    Google Scholar 

  • Stommel, H. M., 1957. A survey of ocean current theory. Deep Sea Res., 4, 149–184.

    Article  Google Scholar 

  • Taylor, G. I., 1915. Eddy motion in the atmosphere. Phil. Trans. Roy. Soc. Lond. A, 140, 1–26.

    Article  Google Scholar 

  • Veronis, G., 1981. Dynamics of large scale ocean circulation. In: Evolution of Physical Oceanography, Warren and Wunsch (eds.). MIT Press.

    Google Scholar 

  • Veronis, G. and H. Stommel, 1956. The action of variable wind stresses on a stratified ocean. J. Mar. Res., 15, 43–75.

    Google Scholar 

  • Weiss, N. O., 1966. The expulsion of magnetic flux by eddies. Proc. Roy. Soc. Lond. A, 293, 310–328.

    Article  Google Scholar 

  • Welander, P., 1966. A two layer frictional model of wind-driven motion in a rectangular oceanic basin. Tellus, 18, 54–62

    Article  Google Scholar 

  • Welander, P., 1968. Wind-driven circulation in one- and two- layer oceans of variable depth. Tellus, 20, 1–15.

    Article  Google Scholar 

  • Williams, G. P. and T. Yamagata, Geostrophic regimes, intermediate solitary vortices and Jovian eddies. J. Atm. Sci., 41, 453–478.

    Google Scholar 

  • Worthington, L. V., 1976. On the North Atlantic circulation. The Johns Hopkins Oceanographic Studies, 6, Johns Hopkins Press, 110 pp.

    Google Scholar 

  • Wunsch, C, 1981. Low-frequency variability in the sea. In: Evolution of Physical Oceanography Warren and Wunsch (eds.). MIT Press.

    Google Scholar 

  • Young, W. R., 1981. The Vertical Structure of the Wind-Driven Circulation. Ph.D. Thesis. Massachusetts Institute of Technology - Woods Hole Oceanographic Institution Joint Program in Oceanography.

    Book  Google Scholar 

  • Young, W. R., 1983. The role of boundary layers in gyre-scale ocean mixing. J. Phys. Oceanogr., 14, 478–483.

    Article  Google Scholar 

  • Young, W. R. and P. B. Rhines, 1982. A theory of the wind-driven circulation II. Gyres with western boundary layers. J. Mar. Res., 40, 849–872.

    Google Scholar 

  • Young, W. R., P. B. Rhines and C. J. R. Garrett, 1982. Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515–527.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Young, W.R. (1987). Baroclinic Theories of the Wind Driven Circulation. In: Abarbanel, H.D.I., Young, W.R. (eds) General Circulation of the Ocean. Topics in Atmospheric and Oceanic Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4636-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4636-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9093-3

  • Online ISBN: 978-1-4612-4636-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics