Skip to main content

The Role of Schwann Cells in the Repair of Glial Cell Deficits in the Spinal Cord

  • Conference paper
Neural Transplantation and Regeneration

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The occurrence of Schwann cells in the central nervous system (CNS) of humans has been recognized for many years. These Schwann cells and peripheral-type myelin have been reported by some to represent regenerative processes (Klintworth 1964, Druckman 1955) to be associated with destructive lesions within the CNS (Payan and Levine 1965, Hughes and Brownell 1963, Bernstein et al. 1973) and to occur in the absence of any known lesion (DeMyer 1965, Adelman and Aronson 1972, Sung et al. 1981). Compression of the spinal cord owing to abnormalities of the vertebral column such as intervertebral disc protrusion (Druckman and Mair 1953, Mair and Druckman 1953) or to tumor (Druckman and Mair 1953) is also associated with intraspinal Schwann cells. Finally, axons myelinated by Schwann cells are often present in plaques in multiple sclerosis (Feigin and Popoff 1966, Feigin and Ogata 1971, Ghatak et al. 1973, Itoyama et al. 1983, Ogata and Feigin, 1975). The papers cited here are more selective than exhaustive in order to point out that in the human being the presence of Schwann cells within the CNS is a rather nonspecific response, as suggested by Koeppen and colleagues (1968), and may represent a reactin to both mechanical and metabolic injury (Adelman and Aronson 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, L.S., Aronson, S.M. (1972). Intramedullary nerve fiber and Schwann cell proliferation within the spinal cord (schwannosis). Neurology 22, 726–731.

    PubMed  CAS  Google Scholar 

  • Beal, J. A., Hall, J.L. (1974). A light microscopic study of the effects of x-irradiation on the spinal cords of neonatal rats. J. Neuropathol. Exp. Neurol. 33, 128–143.

    CAS  Google Scholar 

  • Bellhorn, R.W., Hirano, A., Henkind, P. (1979). Schwann cell proliferations mimicking medullated retinal nerve fibers. Am. J. Ophthal. 87, 469–473.

    PubMed  CAS  Google Scholar 

  • Bernstein, J.J., Collins, G.H., Bernstein, M.E. (1973). Ultrastructure of a human spinal neuroma. J. Neurol. Sei. 18, 489–492.

    Article  CAS  Google Scholar 

  • Berry, M. (1979). Regeneration in the central nervous system. In: Recent Advances in Neuropathology. Cavanaugh, J.B., Smith, W.T. (eds.). New York: Churchill Livingstone, pp. 67–111.

    Google Scholar 

  • Berthold, C.H. (1978). Morphology of normal peripheral axons. In: Physiology and Pathobiology of Axons. Waxman, S.G. (ed.). New York: Raven Press, pp. 3–63.

    Google Scholar 

  • Berthold, C.H., Carlstedt, T. (1977a). Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. II. General organization of the transitional region in Si dorsal rootlets. Acta Physiol. Scand. Suppl. 446, 23–42.

    PubMed  CAS  Google Scholar 

  • Berthold, C.H., Carlstedt, T. (1977b). Observations on the morphology at the transition between the peripheral and the central nervous system in the cat. III. Myelinated fibers in Si dorsal rootlets. Acta Physiol. Scand. Suppl. 446, 43–60.

    PubMed  CAS  Google Scholar 

  • Blakemore, W.F. (1975). Remyelination by Schwann cells of axons demyelinated by intraspinal injection of 6-aminonicotinamide in the rat. J. Neurocytol. 4, 745–757.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, W.F. (1976). Invasion of Schwann cells into the spinal cord of the rat following local injections of lysolecithin. Neuropathol. Appl. Neurobiol. 2, 21–39.

    Article  Google Scholar 

  • Blakemore, W.F. (1978). Observations on remyelination in the rabbit spinal cord following demyelination induced by lysolecithin. Neuropathol. Appl. Neurobiol. 4, 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, W.F. (1982). Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol. Appl. Neurobiol. 8, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, W.F., Patterson, R.C. (1975). Observations on the interactions of Schwann cells and astrocytes following x-irradiation of neonatal rat spinal cord. J. Neurocytol. 4, 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, W.G., Fewings, J.D., Cumming, W.J.K., Harrison, R.M., Faulds, A.J. (1977). Delayed myeloradiculopathy produced by spinal x-irradiation in the rat. J. Neurol. Sei. 31, 63–82.

    Article  CAS  Google Scholar 

  • Bunge, M.B., Williams, A.K., Wood, P.M., Uitto, J., Jeffrey, J.J. (1980). Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation. J. Cell Biol. 84, 184–202.

    Article  PubMed  CAS  Google Scholar 

  • Büssow, H. (1978). Schwann cell myelin ensheathing C.N.S. axons in the nerve fibre layer of the cat retina. J. Neurocytol. 7, 207–214.

    Article  PubMed  Google Scholar 

  • Carlstedt, T. (1981). An electron microscopical study of the developing transitional region in feline Sj dorsal rootlets. J. Neurol. Sei. 50, 357–372.

    Article  CAS  Google Scholar 

  • Chung, K., Coggeshall, R.E. (1983). Propriospinal fibers in the rat. J. Comp. Neurol. 217, 47–53.

    Article  PubMed  CAS  Google Scholar 

  • DeMyer, W. (1965). Aberrant peripheral nerve fibers in the medulla oblongata of man. J. Neurol. Neurosurg. Psychiat. 28, 121–123.

    Article  Google Scholar 

  • Druckman, R. (1955). Review of structural evidence of regeneration of nerve fibers in injury to the human spinal cord. In: Regeneration in the Central Nervous System. Windle, W.F. (ed.). Springfield, IL: C.C. Thomas, pp. 241–246.

    Google Scholar 

  • Druckman, R., Mair, W.G.P. (1953). Aberrant regenerating nerve fibers in injury to the spinal cord. Brain 76, 448–454.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, D. (1955). Experimental compression of the spinal cord. In: Regeneration in the Central Nervous System. Windle, W.F. (ed.). Springfield, IL: C.C. Thomas, pp. 247–258.

    Google Scholar 

  • Feigin, I., Cravioto, H. (1961). A histochemical study of myelin. A difference in the solubility of the glycolipid components in the central and peripheral nervous system. J. Neuropathol. Exp. Neurol. 20, 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Feigin, I., Ogata, J. (1971). Schwann cells and peripheral myelin within human central nervous tissues: The mesenchymal character of Schwann cells. J. Neuropathol. Exp. Neurol. 30, 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Feigin, I., Popoff, N. (1966). Regeneration of myelin in multiple sclerosis. The role of mesenchymal cells in such regeneration and in myelin formation in the peripheral nervous system. Neurology 16, 364–372.

    PubMed  CAS  Google Scholar 

  • Fraher, J.P. (1978). The maturation of the ventral root-spinal cord transition zone. An ultrastructural study. J. Neurol. Sei. 36, 427–449.

    Article  CAS  Google Scholar 

  • Friedrich, V.L., Mugnaini, E. (1983). Myelin sheath thickness in the CNS is regulated near the axon. Brain Res. 274, 329–331.

    Article  PubMed  Google Scholar 

  • Gamble, H.J. (1976). Spinal and cranial nerve roots. In: The Peripheral Nerve. Landon, D.N. (ed.). New York: J. Wiley and Sons, Inc., pp. 330–354.

    Google Scholar 

  • Ghatak, N.R., Hirano, A., Doron, Y., Zimmerman, H.M. (1973). Remyelination in multiple sclerosis with peripheral type myelin. Arch. Neurol. 29, 262–267.

    PubMed  CAS  Google Scholar 

  • Gilmore, S.A. (1963). The effects of x-irradiation on the spinal cords of neonatal rats. II. Histological observations. J. Neuropathol. Exp. Neurol. 22, 294–301.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, S.A. (1971). Autoradiographic studies of intramedullary Schwann cells in irradiated spinal cords of immature rats. Anat. Ree. 171, 517–528.

    Article  CAS  Google Scholar 

  • Gilmore, S.A. (1973). Long-term effects of ionizing radiation on the rat spinal cord: Intramedullary connective tissue formation. Am. J. Anat. 137, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore, S.A., Duncan, D. (1968). On the presence of peripheral-like nervous and connective tissue within irradiated spinal cord. Anat. Ree. 160, 675–690.

    Article  CAS  Google Scholar 

  • Gilmore, S.A., Heard, J.K., Leiting, J.E. (1983). Patterns of x-radiation-induced Schwann cell development in spinal cords of immature rats. Anat. Ree. 205, 313–319.

    Article  CAS  Google Scholar 

  • Gilmore, S.A., Sims, T.J., Heard, J.K. (1982). Autoradiographic and ultrastructural studies of areas of spinal cord occupied by Schwann cells and Schwann cell myelin. Brain Res. 239, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Haller, F.R., Haller, A.C., Low, F.N. (1972). The fine structure of cellular layers and connective tissue space at spinal nerve root attachment in the rat. Am. J. Anat. 133, 109–124.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, B.M., McDonald, W.I., Ochoa, J. (1972). Remyelination in the central diphtheria toxin lesion. J. Neurol. Sei. 17, 293–302.

    Article  CAS  Google Scholar 

  • Heard, J.K. (1981). Changes induced by x-irradiation of the mid-thoracic and lumbosacral levels of neonatal rat spinal cord with special reference to the occurrence of intramedullary Schwann cells. Doctoral Dissertation, The University of Arkansas for Medical Sciences, Little Rock, AR.

    Google Scholar 

  • Heard, J.K., Gilmore, S.A. (1980). Intramedullary Schwann cell development following x-irradiation of mid-thoracic and lumbosacral spinal cord levels in immature rats. Anat. Ree. 197, 85–93.

    Article  CAS  Google Scholar 

  • Hirano, A., Zimmerman, H.M., Levine, S. (1969). Electron microscopic observations of peripheral myelin in a central nervous system lesion. Acta Neuropathol. (Berlin) 12, 348–365.

    Article  CAS  Google Scholar 

  • Hughes, J.T., Brownell, B. (1963). Aberrant nerve fibres within the spinal cord. J. Neurol. Neurosurg. Psychiat. 26, 528–534.

    Article  PubMed  CAS  Google Scholar 

  • Innes, J.R.M., Carsten, A. (1961). Demyelinating or malacic myelopathy. A delayed effect of localized x-irradiation in experimental rats. Arch. Neurol. 4, 190–199.

    PubMed  CAS  Google Scholar 

  • Itoyama, Y., Webster, H.DeF., Richardson, Jr., E.P. Trapp, B.D. (1983). Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis. Ann. Neurol. 14, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Klintworth, G.K. (1964). Axonal regeneration in the human spinal cord with formation of neuromata. J. Neuropathol. Exp. Neurol. 23, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Klüver, H., Barrera, E. (1953). A method for the combined staining of cells and fibers in the nervous system. J. Neuropathol. Exp. Neurol. 12, 400–403.

    Article  PubMed  Google Scholar 

  • Koeppen, A.H., Ordinario, A.T., Barron, K.D. (1968). Aberrant intramedullary peripheral nerve fibers. Arch. Neurol. 18, 567–573.

    PubMed  CAS  Google Scholar 

  • Kogel, A.J., van der. (1977). Radiation tolerance of the rat spinal cord: Time-dose relationships. Radiology 122, 505–509.

    PubMed  Google Scholar 

  • Kogel, A.J., van der, Barendsen, G.W. (1974). Late effects of spinal cord irradiation with 300KV x-rays and 15 MeV neutrons. Brit. J. Radiol. 47, 393–398.

    Article  PubMed  Google Scholar 

  • Lampert, P., Cressman, M. (1964). Axonal regeneration in the dorsal columns of the spinal cord of adult rats. An electron microscopic study. Lab. Invest. 13, 825–839.

    PubMed  CAS  Google Scholar 

  • Mair, W.G.P., Druckman, R. (1953). The pathology of spinal cord lesions and their relation to the clinical features in protrusion of cervical intervertebral discs. Brain 76, 70–91.

    Article  PubMed  CAS  Google Scholar 

  • Mastaglia, F.L., McDonald, W.I., Watson, J.V., Yogendran, K. (1976). Effects of x- radiation on the spinal cord: An experimental study of the morphological changes in central nerve fibers. Brain 99, 101–122.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M.A., St. Onge, M.F., Faciane, C.L., Gelderd, J.B. (1979). Axon sprouting into segments of rat spinal cord adjacent to the site of a previous transection. Neuropathol. Appl. Neurobiol. 5, 181–196.

    Article  CAS  Google Scholar 

  • Maxwell, D.S., Kruger, L., Pineda, A. (1969). The trigeminal nerve root with special reference to the central-peripheral transition zone—an electron microscopic study in the Macaque. Anat. Ree. 164, 113–126.

    Article  CAS  Google Scholar 

  • Ogata, J., Feigin, I. (1975). Schwann cells and regenerated peripheral myelin in multiple sclerosis: An ultrastructural study. Neurology 25, 713–716.

    PubMed  CAS  Google Scholar 

  • Payan, H., Levine, S. (1965). Focal axonal proliferation in pons (central neurinoma). Association with cystic encephalomalacia. Arch. Pathol. 79, 501–504.

    PubMed  CAS  Google Scholar 

  • Puchala, E., Windle, W.F. (1977). The possibility of structural and functional restitution after spinal cord injury. A review. Exp. Neurol. 55, 1–42.

    Article  CAS  Google Scholar 

  • Raine, C.S. (1976). On the occurrence of Schwann cells within the normal central nervous system. J. Neurocytol. 5, 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Raine, C.S., Brown, A.M., McFarlin, D.E. (1982). Heterotopic regeneration of peripheral nerve fibers into the subarachnoid space. J. Neurocytol. 11, 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Raine, C.S., Traugott, U., Stone, S.H. (1978). Glial bridges and Schwann cell migration during chronic demyelination in the C.N.S. J. Neurocytol. 7, 541–553.

    Article  PubMed  CAS  Google Scholar 

  • Reier, P.J., Stensaas, L.J., Guth, L. (1983). The astrocytic scar as an impediment to regeneration in the central nervous system. In: Spinal Cord Reconstruction. Kao, C.C., Bunge, R.P., Reier, P.J. (eds.). New York: Raven Press, pp. 163–196.

    Google Scholar 

  • Rodgers, C.H. (1965). Alterations in spinal cords of neonatal rats following x-irradiation. Exp. Neurol. 11, 502–515.

    Article  PubMed  CAS  Google Scholar 

  • Salzer, J.L., Bunge, R.P., Glaser, L. (1980). Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen. J. Cell Biol. 84, 767–778.

    Article  PubMed  CAS  Google Scholar 

  • Sims, T.J., Gilmore, S.A. (1983). Interactions between intraspinal Schwann cells and the cellular constituents normally occurring in the spinal cord: An ultrastructural study in the irradiated rat. Brain Res. 276, 17–30.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, D.H., Valsamis, M.P., Stone, S.H., Raine, C.S. (1975). Progressive demyelination and reparative phenomena in chronic experimental allergic encephalomyelitis. J. Neuropathol. Exp. Neurol. 34, 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Steer, J.M. (1971). Some observations on the fine structure of rat dorsal nerve roots. J. Anat. (London) 109, 467–485.

    CAS  Google Scholar 

  • Sung, J.H., Mastri, A.R., Chen, K.T.K. (1981). Aberrant peripheral nerves and neuromas in normal and injured spinal cords. J. Neuropathol. Exp. Neurol. 40, 551–565.

    Article  PubMed  CAS  Google Scholar 

  • Trapp, B.D., Itoyama, Y., Sternberger, N.H., Quarles, R.H., Webster, H.DeF. (1981). Immunocytochemical localization of P0 protein in Golgi complex membranes and myelin of developing rat Schwann cells. J. Cell Biol. 90, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S.G., Sims, T.J. 1985. Specificity in central myelination: Evidence for local regulation of myelin thickness. Brain Res. 292, 179–185.

    Article  Google Scholar 

  • Wisniewski, H.M., Madrid, R.E. (1983). Chronic progressive experimental allergic encephalomyelitis (EAE) in adult guinea pigs. J. Neuropathol. Exp. Neurol. 42, 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P.M., Bunge, R.P. (1975). Evidence that sensory axons are mitogenic for Schwann cells. Nature (London) 256, 662–664.

    Article  CAS  Google Scholar 

  • Wyse, J.P.H. (1980). Schwann cell myelination in the nerve fibre layer of the BW rat retina. J. Neurocytol. 9, 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Wyse, J.P.H., Spira, A.W. (1981). Ultrastructural evidence of a peripheral nervous system pattern of myelination in the avascular retina of the guinea pig. Acta Neuropathol. (Berlin) 54, 203–210.

    Article  CAS  Google Scholar 

  • Yajima, K., Suzuki, K. (1979). Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab. Invest. 41, 385–392.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Gilmore, S.A., Sims, T.J. (1986). The Role of Schwann Cells in the Repair of Glial Cell Deficits in the Spinal Cord. In: Das, G.D., Wallace, R.B. (eds) Neural Transplantation and Regeneration. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4846-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4846-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9327-9

  • Online ISBN: 978-1-4612-4846-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics