Skip to main content

Part of the book series: Progress in Physics ((PMP,volume 6))

  • 155 Accesses

Abstract

In many grand unified models as well as in many horizontal symmetry schemes fermion mass relations of the form mc/mt/mt,... = mµ/mτ/mL ... = ms/mb/mb, ... are expected. A gauge independent formulation for the effective quark mass based on the momentum substraction scheme is used to compute the naked t-threshold with the result: 2Mt = 51 ± 1 GeV. If the fourth charged lepton is at 30 GeV, the fourth generation quark masses are found to be Mb, ~ 73 ± 3 GeV, Mt, ~ 360 ± 10 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Pakvasa and H. Sugawara, Phys. Lett. 82B (1979) 105.

    ADS  Google Scholar 

  2. G. Segre, H. A. Weldon, and J. Weyers, Phys. Lett. 83B (1979) 851

    Google Scholar 

  3. D. Grosser, Phys. Lett. 83B (1979) 855.

    Google Scholar 

  4. T. Yanagida, Phys. Rev. D20 (1979) 2986.

    ADS  Google Scholar 

  5. J. D. Bjorken, SLAC-PUB-2195 (1978).

    Google Scholar 

  6. S. L. Glashow, Proceedings of Neutrino - 79, international conference on neutrinos, weak interactions and cosmology, Bergen, June 18 - 22, 1979, ed. A. Haatuft and C. Jarlskog, Vol. 1,p. 518; Phys. Rev. Lett. 45 (1980) 1914.

    Google Scholar 

  7. K. T. Mahanthappa and M. A. Sher, Phys. Lett. 86B (1979) 294

    ADS  Google Scholar 

  8. R. Barbieri and D. V. Nanopoulos, Phys. Lett. 91B (1980) 369.

    ADS  Google Scholar 

  9. K. Kanaya, H. Sugawara, S. Pakvasa, and S. F. Tuan, UH-511–461-82

    Google Scholar 

  10. K. Kanaya, KEK Report KEK-TH46. Details and a complete list of references will be found there.

    Google Scholar 

  11. H. Georgi and H. D. Politzer, Phys. Rev. D14 (1976) 1829.

    ADS  Google Scholar 

  12. J. Schwinger, Phys. Rev. 82 (1951) 664.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A nice physical discussion of the thresholds in and the gauge independence of bGP can be found in W. Kummer, Phys. Lett. 105B (1981) 473.

    ADS  Google Scholar 

  14. R. G. Moorhouse, M. R. Pennington, and G. G. Ross, Nucl. Phys. B124 (1977) 285.

    Article  ADS  Google Scholar 

  15. A. Buras, J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B135 (1977) 66.

    ADS  Google Scholar 

  16. K. Tennakone and S. Pakvasa, Phys. Rev. Lett. 13 (1971) 757

    Article  ADS  Google Scholar 

  17. S. Blaha, Phys. Lett. 84B (1979) 116; H. Georgi, Harvard Report HUTP-81/A057.

    ADS  Google Scholar 

  18. The relevance of this flavor changing mode at one loop level for producing heavy flavors in Z0-decay was pointed out to me by T. Weiler.

    Google Scholar 

  19. M. Veltman, Phys. Lett. 70B (1977) 252

    ADS  Google Scholar 

  20. M. Chanowitz, M. Furman, and I. Hinchliffe, Phys. Lett. 78B (1978) 285

    ADS  Google Scholar 

  21. P. Q. Hung, Phys. Rev. Lett. 42 (1979) 873

    Article  ADS  Google Scholar 

  22. H. D. Politzer and S. Wolfram, Phys. Lett. 82B, (1979) 242, 421.

    Google Scholar 

  23. A. Buras, Phys. Rev. Lett. 46 (1981) 1354

    Article  ADS  Google Scholar 

  24. V. Barger, W. Long, E. Ma, and A. Pramudita, Phys. Rev. D25 (1982) 1860.

    Google Scholar 

  25. M. R. Pennington and G. G. Ross, Phys. Lett. 98B (1981) 291

    ADS  Google Scholar 

  26. C. T. Hill, Phys. Rev. D24 (1981) 691

    ADS  Google Scholar 

  27. M. Machacek and M. Vaughn, Phys. Lett. 103B (1981) 427.

    ADS  Google Scholar 

  28. The conventional wisdom is that tt̅ production for Mt ~ 25 GeV will be very difficult to detect in hadronic collisions, e.g. M. Dechantsreiter et al. Phys. Rev. D20 (1979) 2862. There are some recent more optimistic estimates, however.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

On behal of K. Kanaya, H. Sugawara, S. Pakvasa, and S. F. Tuan.

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pakvasa, S. (1982). Mass of the t-Quark. In: Frampton, P.H., Glashow, S.L., van Dam, H. (eds) Third Workshop on Grand Unification. Progress in Physics, vol 6. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5800-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5800-1_25

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3105-5

  • Online ISBN: 978-1-4612-5800-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics