Skip to main content

On Poisson Brackets of Semi-Invariants

  • Chapter
Manifolds and Lie Groups

Part of the book series: Progress in Mathematics ((PM,volume 14))

Abstract

In the present article we shall treat Gelfand-Dikii’s theory of formal calculus of variations [1] from a new point of view, invariant theory of formal power series

$${f_\lambda }(\xi x) = \sum\limits_\ell {\frac{{{{(\lambda )}_\ell }}}{{\ell !}}} {\xi ^{(\ell )}}{x^\ell }$$

, and we shall give natural expllicit expressions of Poisson brackets. In formal calculus of variations Poisson brackets are defined on the quotient module

$${\raise0.7ex\hbox{${K\left[ {...,{{\left( {\frac{\partial }{{\partial x}}} \right)}^\ell }y,...} \right]}$} \!\mathord{\left/{\vphantom {{K\left[ {...,{{\left( {\frac{\partial }{{\partial x}}} \right)}^\ell }y,...} \right]} {K + \frac{\partial }{{\partial x}}K\left[ {...,{{\left( {\frac{\partial }{{\partial x}}} \right)}^\ell }y,...} \right]}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${K + \frac{\partial }{{\partial x}}K\left[ {...,{{\left( {\frac{\partial }{{\partial x}}} \right)}^\ell }y,...} \right]}$}}$$

, in our case, however, they are defined on ring of semi-invaiants

$$G = \left\{ {\varphi \in K\left[ \xi \right]D\varphi = \sum\limits_\ell {\ell {\xi ^{(\ell - 1)}}} \frac{{\partial \varphi }}{{\partial {\xi ^{(\ell )}}}} = 0} \right\}$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.M. Gelfand, and L.A. Dikii, “The structure of Lie algebras in formal calculus of variations,” Funkts, Analiz Prilozhen., 10, No. 1. 2836 (1976).

    MathSciNet  Google Scholar 

  2. H. Morikawa, “Some analytic and geometric application of the invariant theoretic method,” Nagoya Math. J. 80, 1–47 (1980).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morikawa, H. (1981). On Poisson Brackets of Semi-Invariants. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics