Skip to main content

Adaptation to Hypocapnia and its Role in Adaptation to Hypoxia

  • Conference paper
Carbon Dioxide and Metabolic Regulations

Part of the book series: Topics In Environmental Physiology And Medicine ((TEPHY))

  • 98 Accesses

Abstract

My interest in acclimatization to hypocapnia or chronic low \(\text{PA}_{\text{CO}_\text{2} }\) arose as a byproduct of my long interest in acclimatization to high altitude hypoxia, one of the two most common causes of chronic hypocapnia. (The other is pregnancy.) I used to think that the ventilatory aspects of acclimatization to high altitude simply represented ventilatory acclimatization to chronic hypocapnia. The latter would be produced by the hyperventilation resulting from hypoxic stimulation of the peripheral chemoreceptors. This is a very old idea, certainly not original with me. The best evidence for it came from the classic studies of Brown, Hemingway, and Visscher [1950], who showed that 24 hr of passive hyperventilation in a body respirator caused a readjustment in the regulation of breathing such that the \(\text{PA}_{\text{CO}_\text{2} }\) was regulated at a lower level when spontaneous breathing was resumed. Such a shift in the regulation of Pco2 has become the classic sign of ventilatory acclimatization to hypocapnia, my subject for today. Since hypoxia stimulates hyperventilation and would produce chronic hypocapnia, it was thought that the shift in regulation of CO2 at altitude was simply the experiment of Brown et al., with hypoxia taking the role of the respirator. About a decade ago I wrote a review (KELLOGG [I960]) that strongly supported this view, and I have been forced to change my mind. I propose today to review the evidence that has changed my thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Brown, E. B., Jr., Hemingway, A., and Visscher, M. B., “Arterial blood pH and pCO2 changes in response to CO2 inhalation after 24 hours of passive hyperventilation.” J. Appl. Physiol. 2:544–48 (1950).

    PubMed  CAS  Google Scholar 

  • Chiodi, H., “Respiratory adaptations to chronic high altitude hypoxia.” J. Appl. Physiol. 10:81–87 (1957).

    PubMed  CAS  Google Scholar 

  • Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., and Wollman, H., “Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man.” J. Appl. Physiol. 23:183–89 (1967).

    PubMed  CAS  Google Scholar 

  • Davenport, H. W., Brewer, G., Chambers, A. H., and Goldschmidt, S., “The respiratory responses to anoxemia of unanesthetized dogs with chronically denervated aortic and’ carotid chemoreceptors and their causes.’ Am. J. Physiol. 148:406–16 (1947).

    PubMed  CAS  Google Scholar 

  • Eger, E. I., II, Kellogg, R. H., Mines, A. H., Lima-Ostos, M., Morrill, C. G., and Kent, D. W., “Influence of CO2 on ventilatory acclimatization to altitude.” J. Appl. Physiol. 24:607–15 (1968).

    PubMed  Google Scholar 

  • Gilfillan, R. S., Hansen, J. T., Kellogg, R. H., Pace, N., and Cuthbertson, E. M., “Physiologic study of the chemoreceptor mechanism in the dog at sea level and at high altitude (12,600 ft.).” Circulation 18:724 (1958).

    Google Scholar 

  • Kellogg, R. H., “Acclimatization to carbon dioxide.” Anesthesiology. 21:634–41 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, R. H., “The role of CO2 in altitude acclimatization.” In The regulation of human respiration, D. J. C. Cunningham and B. B. Lloyd, eds. Oxford: Blackwell (1963).

    Google Scholar 

  • Lloyd, B. B., Jukes, M. G. M., Cunningham, D. J. C., “The relation between alveolar oxygen pressure and the respiratory response to carbon dioxide in man.” Quart. J. Exptl. Physiol. 43:214–27 (1958).

    CAS  Google Scholar 

  • Milledge, J. S., and Lahiri, S., “Respiratory control in lowlanders and Sherpa high-landers at altitude.” Resp. Physiol. 2:310–22 (1967).

    Article  CAS  Google Scholar 

  • Mines, A. H. Ventilatory regulation in goats at high altitude. (Ph.D. Dissertation). San Francisco: University of California (1968). [Dissertation Abstracts International B 31 (No. 1): 368B-69B, July 1970.]

    Google Scholar 

  • Mines, A. H. and Sørensen, S. C., “Changes in the electrochemical potential difference for HCO3 between blood and cerebrospinal fluid and in cerebrospinal fluid lactate concentration during isocarbic hypoxia.” Acta Physiol. Scand. 81:225–33 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Morrill, C. G., Cerebrospinal fluid changes and exercise effects in ventilatory acclimatization to hypoxia. (Ph.D. Dissertation). San Francisco: University of California (1970).

    Google Scholar 

  • Plum, F., and Posner, J. B., “Blood and cerebrospinal fluid lactate during hyperventilation.” Am. J. Physiol. 212:864–70 (1967).

    PubMed  CAS  Google Scholar 

  • Plum, F., Posner, J. B., and Smith, W. W., “Effect of hyperbaric-hyperoxic hyperventilation on blood, brain, and CSF lactate.” Am. J. Physiol. 215:1240–44 (1968).

    PubMed  CAS  Google Scholar 

  • Severinghaus, J. W., Mitchell, R. A., Richardson, B. W., and Singer, M. M., “Respiratory control at high altitude suggesting active transport regulation of CSF.” J. Appl. Physiol. 18:1155–66 (1963).

    PubMed  CAS  Google Scholar 

  • Severinghaus, J. W., Bainton, C. R., and Carcelen, A., “Respiratory insensitivity to hypoxia in chronically hypoxic man.” Resp. Physiol. 1:308–34 (1966).

    Article  CAS  Google Scholar 

  • Siesjö, B. K, and Sorensen, S. C., eds. Ion homeostasis of the brain. Copenhagen, Munksgaard, and New York: Academic Press (1971).

    Google Scholar 

  • Sørensen, S. C., and Mines, A. H., “Ventilatory responses to acute and chronic hypoxia in goats after sinus nerve section.” J. Appl. Physiol. 28:832–35 (1970).

    PubMed  Google Scholar 

  • Sørensen, S. C., and Mines, A. H., “Ventilatory acclimatization to hypoxia in rabbits after denervation of peripheral chemoreceptors.” J. Appl. Physiol. 28:836–39 (1970).

    PubMed  Google Scholar 

Bibliography

  • Astrup, P., Jørgensen, K., Siggard Andersen, O., and Engel, K., “The acid-base metabolism. A new approach.” Lancet 1:1035–39 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Böning, D., “Veränderungen der CO2-Bindungs- kurve des Blutes bei akuter respiratorisches Acidose und ihre Ursachen. I. Untersuchungen an Hunden.” Pflüg. Arch. Physiol. 302:133–48 (1968).

    Article  Google Scholar 

  • Böning, D, and Heinrich, K. W., “Veränderungen der CO2-Bindungskurve des Blutes bei akuter respiratorischer Acidose und ihre Ursachen. II. Untersuchungen am Menschen.” Pflüg. Arch. Physiol. 303:162–72 (1968).

    Article  Google Scholar 

  • Döring, G. K., and Loeschcke, H. H., “Atmung und Säure-Basengleichgewicht in der Schwangerschaft.” Pflüg. Arch. Ges. Physiol. 249:437–51 (1947).

    Article  Google Scholar 

  • Eger, E. I., II, Kellogg, R. H., Mines, A. H., Lima-Ostos, M., Morrill, C. G., and Kent, D. W., “Influence of CO2 on ventilatory acclimatization to altitude.” J. Appl. Physiol. 24:607–15 (1968).

    PubMed  Google Scholar 

  • Eichenholz, A., Mulhausen, R. O., Anderson, W. E., and MacDonald, F. M., “Primary hypocapnia: a cause of metabolic acidosis.” J. Appl. Physiol. 17:283–88 (1962).

    PubMed  CAS  Google Scholar 

  • Engel, K, Kildeberg, P., and Winters, R. W., “Quantitative displacement of blood acid- base status in acute hypocapnia.” Scand. J. Clin. Lab. Invest. 23:5–17 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kellogg, R. H., “The role of CO2 in altitude acclimatization.” pp. 379–85 in: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford: Blackwell (1963).

    Google Scholar 

  • Kronenberg, R. S., and Cain, S. M., “Effects of acetazolamide and hypoxia on cerebrospinal fluid bicarbonate.” J. Appl. Physiol. 24:17–20 (1968).

    PubMed  CAS  Google Scholar 

  • Michel, C. C., Lloyd, B. B., and Cunningham, D. J. C., “The in vivo carbon dioxide dissociation curve of true plasma.” Resp. Physiol. 1:121–37 (1966).

    Article  CAS  Google Scholar 

  • Mines, A. H., and Sorensen, S. C., “Changes in the electrochemical potential difference for HCO3” between blood and cerebrospinal fluid and in cerebrospinal fluid lactate concentration during isocarbic hypoxia.” Acta Physiol. Scand. 81:225–33 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Morrill, C. G., “Cerebrospinal fluid changes and exercise effects in ventilatory acclimatization to hypoxia.” Doctoral dissertation. San Francisco: University of California (1970).

    Google Scholar 

  • Papadopoulos, C. N., and Keats, A. S., “The metabolic acidosis of hyperventilation produced by controlled respiration.” Anesthesiology 20:156–61 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer, J. R., Fencl, V., Heisey, S. R., and Held, D., “Role of cerebral fluids in control of respiration as studied in unanes- thetized goats.” J. Appl. Physiol. 208:436–50 (1965).

    CAS  Google Scholar 

  • Prys-Roberts, C., Kelman, G. R., and Nunn, J. F., “Determination of the in vivo carbon dioxide titration curve of anaesthetized man.” Brit. J. Anaesth. 38:500–509 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Riley, R. L., and Houston, C. S., “Composition of alveolar air and volume of pulmonary ventilation during long exposure to high altitude.” J. Appl. Physiol. 3:526–34 (1951).

    PubMed  CAS  Google Scholar 

  • Schneider, E. C., “Physiological observations following descent from Pike's Peak to Colorado Springs.” Am. J. Physiol. 32:295–308 (1913).

    Google Scholar 

  • Shaw, L. A., and Messer, A. C., “The transfer of bicarbonate between the blood and tissues caused by alterations of the carbon dioxide concentration in the lungs.” Am. J. Physiol. 100:122–36 (1932).

    CAS  Google Scholar 

  • Siggaard-Andersen, O., “Acute experimental acid-base disturbances in dogs. An investigation of the acid-base and electrolyte content of blood and urine.” Scand. J. Clin. Lab. Invest. 14, Suppl. 66:1–20 (1962).

    PubMed  Google Scholar 

  • Sørensen, S. C., and Mines, A. H., “Ventilatory responses to acute and chronic hypoxia in goats after sinus nerve section.” J. Appl. Physiol. 28:832–35 (1970).

    PubMed  Google Scholar 

  • Sørensen, S. C., and Mines, A. H.. “Ventilatory acclimatization to hypoxia in rabbits after denervation of peripheral chemoreceptors.” J. Appl. Physiol. 28:836–39 (1970).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kellogg, R.H. (1974). Adaptation to Hypocapnia and its Role in Adaptation to Hypoxia. In: Nahas, G., Schaefer, K.E. (eds) Carbon Dioxide and Metabolic Regulations. Topics In Environmental Physiology And Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9831-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9831-1_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9833-5

  • Online ISBN: 978-1-4612-9831-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics