Skip to main content

Spatiotemporal Transitions in Temporal Lobe Epilepsy

  • Chapter
Quantitative Neuroscience

Part of the book series: Biocomputing ((BCOM,volume 2))

Abstract

Epilepsy is a common neurological disorder characterized by recurrent seizures, most of which appear to occur spontaneously as a result of complex dynamical interactions among many regions of the brain. The most common type of epilepsy in adults is temporal lobe epilepsy. Employment of nonlinear dynamics techniques, based on the chaos theory, led us to the hypotheses that (1) seizures are a transition from spatiotemporal chaos to a more ordered ictal (symptomatic) state, (2) during the interictal (asymptomatic) state, the epileptogenic focus is dynamically isolated from other areas of the cerebral hemispheres, (3) the seizure discharge can occur only after a preictal transition state during which the focus starts to interact with other cortical areas (preictal state), and (4) the seizure serves to reset the brain, reversing the pathological interaction among critical cortical sites, thus dynamically isolating the seizure onset zone.

Through the analysis of long-term intracranial EEG recordings obtained in patients with medically intractable seizures, we observed: (1) drop in values of a dynamical measure (STL max ) during the seizure, indicating increased temporal order of the EEG signal — hypothesis 1, (2) convergence of STL max values among almost all electrode pairs, indicating increased spatial order — hypothesis 1, (3) generally higher values of T index (divergent values of STL max ) during the interictal state when the epileptogenic focus is compared to other sites — hypothesis 2, (4) the average differences in STL max values between the epileptogenic hippocampus and most other sites is typically reduced (low T-index values, “dynamical entrainment”) prior to each seizure — hypothesis 3, and (5) a divergence of STL max (increase in the T-index) between the epileptogenic hippocampus and other cortical sites after each seizure — hypothesis 4. These observations support our hypotheses regarding the preictal transitions in temporal lobe epilepsy. We anticipate that these observations will lead to a better understanding of the physiological processes involved in temporal lobe epilepsy.

This work was supported by the Department of Veterans Affairs and grant from NIH/NIBIB (8R01EB002089-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.W. Abou-Khalil, G.J. Siegel, J.C. Sackellares, S. Gilman, R. Hichwa, and R. Marshall. Positron emission tomography studies of cerebral glucose metabolism in patients with chronic partial epilepsy. Ann. NeuroL, 22: 480–486, 1987.

    Article  Google Scholar 

  2. T.L. Babb and W.J. Brown. Pathological findings in epilepsy. In J. Engel Jr., editor, Surgical treatment of the epilepsien. Raven Press, 1987.

    Google Scholar 

  3. D.E. Burdette, Sakuraisy, T.R. Henry, D.A. Ross, P.B. Pennell, J.C. Sackellares K.A. Frey, and R. Albin. Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy. Neurology, 45: 934–941, 1995.

    Google Scholar 

  4. M.C. Casdagli, L.D. Iasemidis, R.L. Gilmore, S.N. Roper, R.S. Savit, and J.C. Sackellares. Nonlinearity in invasive eeg recordings from temporal lobe epilepsy. EEG Clin. Neurophysiology, 102: 98–105, 1997.

    Article  Google Scholar 

  5. M.C. Casdagli, L.D. Iasemidis, J.C. Sackellares, S.N. Roper, R.L. Gilmore, and R.S. Savit. Characterizing nonlinearity in invasive eeg recordings from temporal lobe epilepsy. Physica D, 99: 381–399, 1996.

    Article  MATH  Google Scholar 

  6. M.C. Casdagli, L.D. Iasemidis, R.S. Savit, R.L. Gilmore, S.N. Roper, and J.C. Sackellares. Nonlinear analysis of mesial temporal lobe seizures using a surrogate data technique. Epilepsia, 36: 142, 1995.

    Google Scholar 

  7. J.A.N. Corsellis and B.S. Meidnim. Epilepsy. In W. Blackwood and J.A.N. Corsellis, editors, Neuropathology, pages 771–795. Arnold, 1976.

    Google Scholar 

  8. V.M. Fernandes de Lima, J.P. Pijn, C.N. Filipe, and F. Lopes da Silva. The role of hippocampal commissures in the interhemispheric transfer of epileptiform afterdischarges in the rat: a study using linear and nonlinear regression analysis. Electroenceph. Clin. Neurophysiol., 76: 520–539, 1990.

    Article  Google Scholar 

  9. J.P. Eckmann, S.O. Kamphorst, D. Ruelle, and S. Ciliberto. Lyapunov exponents from time series. Phys. Rev. A, 34: 4971–4972, 1986.

    Article  MathSciNet  Google Scholar 

  10. M.A. Falconer, E.A. Serefetinides, and J.A.N. Corsellis. Aetiology and pathogenesis of temporal lobe epilepsy. Arch. Neurol., 19: 233–240, 1964.

    Google Scholar 

  11. H. Gastaut, J.L. Gastaut, G.E. Concalves de Silva, and G.R. Fernandez Sanchez. Relative frequency of different types of epilepsy: a study employing the classification of the international league against epilepsy. Epilepsia, 16 (3): 457–461, 1975.

    Article  Google Scholar 

  12. T.R. Henry, K.A. Frey, J.C. Sackellares, S. Gilman, R.A. Koeppe, J.A. Brunberg, D.A. Ross, S. Bereft, H.A. Buchtel, A.B. Young, and D.E. Kuhl. In vivo cerebral metabolism and central benzodiazapine receptor binding in temporal lobe epilepsy. Neurology, 43:1998–2006, 1993.

    Google Scholar 

  13. L.D. Iasemidis, A. Barretov R.L. Gilmore, B.M. Uthman, S. Roper, and J.C. Sackellares. Spatiotemporal evolution of dynamical measures precedes onset of mesial temporal lobe seizures. Epilepsia, 35 (suppl. 8): 133, 1994.

    Google Scholar 

  14. L.D. Iasemidis, L.D. Olson, R.S. Savit, and J.C. Sackellares. Time dependencies in the occurrences of epileptic seizures. Epilepsy Research, 17: 81–94, 1994.

    Article  Google Scholar 

  15. L.D. Iasemidis, P.M. Pardalos, J.C. Sackellares,, and D.-S. Shiau. Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. Journal of Combinatorial Optimization, 5: 9–26, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  16. L.D. Iasemidis, J.C. Principe, J.M. Czaplewski, R.L. Gilman, S.N. Roper, and J.C. Sackellares. Spatiotemporal transition to epileptic seizures: A nonlinear dynamical analysis of scalp and intracranial eeg recordings. In J.C. Principe F. L.Silva and L.B. Almeida, editors, Spatiotemporal Models in Biological and Artificial Systems. IOS Press, 1997.

    Google Scholar 

  17. L.D. Iasemidis and J.C. Sackellares. Long time scale temporo-spatial patterns of entrainment of preictal electrocorticographic data in human temporal lobe epilepsy. Epilepsia, 31 (5): 621, 1990.

    Google Scholar 

  18. L.D. Iasemidis and J.C. Sackellares. The evolution with time of the spatial distribution of the largest lyapunov exponent on the human epileptic cortex. In D.W. Duke and W.S. Pritchard, editors, Measuring Chaos in the Human Brain. World Scientific, 1991.

    Google Scholar 

  19. L.D. Iasemidis and J.C. Sackellares. The use of dynamical analysis of eeg frequency content in seizure prediction. EEG Clin. Neurophysiology, 1993.

    Google Scholar 

  20. L.D. Iasemidis and J.C. Sackellares. Chaos theory and epilepsy. The Neuroscientist, 12: 118–126, 1996.

    Article  Google Scholar 

  21. L.D. Iasemidis, J.C. Sackellares, and R.S. Savit. Quantification of hidden time dependencies in the eeg within the framework of nonlinear dynamics. In B. Jansen, editor, Nonlinear Dynamical Analysis of the EEG. World Scientific Publishing Company, 1993.

    Google Scholar 

  22. L.D. Iasemidis, J.C. Sackellares, H.P. Zaveri, and W.J. Williams. Phase space topography of the electrocorticogram and the lyapunov exponent in partial seizures. Brain Topogr., 2: 187–201, 1990.

    Article  Google Scholar 

  23. L.D. Iasemidis, D.-S. Shiau, W. Chaovalitwongse, J.C. Sackellares, P.M. Pardalos, J.C. Principe, P.R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical ENgineering, 50 (5): 616–627, 2003.

    Article  Google Scholar 

  24. L.D. Iasemidis, D.-S. Shiau, J.C. Sackellares, and P.M. Pardalos. Transition to epileptic seizures: Optimization. In D.Z. Du, P.M. Pardalos, and J. Wang, editors, DIMAC Sseries in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1999.

    Google Scholar 

  25. J. Engel Jr., D.E. Kuhl, M.E. Phelps, and J.C. Mazziota. Interictal cerebral glucose metabolism in partial epilepsy and its relation to eeg changes. Ann. Neurol., 12: 510–517, 1982.

    Article  Google Scholar 

  26. N.C. De Lanerrole, J.H. Kim, R.J. Robbins, and D.D. Spencer. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain. Res., 495: 387–395, 1989.

    Article  Google Scholar 

  27. J.H. Margerison and J.A.N. Corsellis. Epilepsy and the temporal lobes. Brain, 89: 499–530, 1966.

    Article  Google Scholar 

  28. J.W. McDonald, E.A. Garofalo, T. Hood, J.C. Sackellares, P.E. McKeever S. Gilman, J.C. Troncaso, and M.V. Johnston. Altered excitatory and inhibitory aminoacid receptor binding in hippocampus of patients with temporal lobe epilepsy. Annals of Neurology, 29: 529–541, 1991.

    Article  Google Scholar 

  29. E. Niedermeyer. Depth electroencephalography. In E. Niedermeyer and F. Lopes da Silva, editors, Electroencephalography: Basic principles, clinical applications and relatedfields, pages 593–617. Urban and Schwarzenberg, 1987.

    Google Scholar 

  30. N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw. Geometry from time series. Phys. Rev. Lett., 45: 712–716, 1980.

    Article  Google Scholar 

  31. J.C. Sackellares, L.D. Iasemidis, D.-S. Shiau, R.L. Gilmore, and S.N. Roper. Epilepsy - when chaos fails. In K. Lehnertz, J. Ariihold, P. Grassberger, and C.E. Elger, editors, Chaos in the brain? World Scientific, 2000.

    Google Scholar 

  32. J.C. Sackellares, G.J. Siegel, B.W. Abou-Khalil, T.W. Hood, P. McKeever S. Gilman, R.D. Hichwa, and G.D. Hutchins. Differences between lateral and mesial temporal metabolism interictally in epilepsy of mesial temporal origin. Neurology, 40: 1420–1426, 1990.

    Google Scholar 

  33. H.J. Sagar and J.M. Oxbury. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol., 22: 334–340, 1987.

    Article  Google Scholar 

  34. I. Savic, A. Persson, P. Roland, S. Pauli, G. Dedvall, and L. Witen. In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet, 2:863–866, 1988.

    Article  Google Scholar 

  35. D.D. Spencer and C.T.E. Pappas. Surgical decisions regarding medically intractable epilepsy. Clinical Neurosurgery, 38: 548–566, 1992.

    Google Scholar 

  36. S.S. Spencer, K. Jung, and D.D. Spencer. Ictal spikes: a marker of specific hippocampal cell loss. Electroenceph. Clin. Neurophysiol., 83: 104–111, 1992.

    Article  Google Scholar 

  37. F. Takens. Detecting strange attractors in turbulence. In D.A. Rand and L.S. Young, editors, Dynamical systems and turbulence, Lecture Notes in Mathematics, pages 366–381. Springer-Verlag, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sackellares, J.C., Iasemidis, L.D., Shiau, DS., Pardalos, P.M., Carney, P.R. (2004). Spatiotemporal Transitions in Temporal Lobe Epilepsy. In: Pardalos, P.M., Sackellares, J.C., Carney, P.R., Iasemidis, L.D. (eds) Quantitative Neuroscience. Biocomputing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0225-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0225-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7951-5

  • Online ISBN: 978-1-4613-0225-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics