Skip to main content

Behavior of a Moving Griffith Crack in Piezoelectric Ceramics

  • Chapter
Mechanics of Electromagnetic Solids

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 3))

  • 420 Accesses

Abstract

The plane problem of a finite Griffith crack moving with a constant velocity in piezoelectric ceramics, which are subjected to far-field mechanical and electrical loads, is studied. The closed-form expressions for the electroelastic fields are obtained based on the extended Stroh formalism. Special attention is paid to the dependence of the normalized hoop stresses near a crack tip on crack velocity, electrical to mechanical load ratios and material properties. The calculated normalized hoop stresses are employed to predict the propagation direction of a moving crack based on the maximum tensile stress criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fang D.N., Soh A.K., Liu J.X., 2001. Electromechanical deformation and fracture of piezoelectric/ferroelectric materials. Acta Mech Sinica 17, 193–213.

    Article  Google Scholar 

  2. Zhang T. Y., Zhao M. H., Tong P., 2001. Fracture of piezoelectric ceramics. Advances in Applied mechanics 38, 147–289.

    Article  Google Scholar 

  3. Dascalu C., Maugin, G.A., 1995. On the dynamic fracture of piezoelectric materials. QJ Mech Appl Math 48, 237–255.

    Article  MathSciNet  MATH  Google Scholar 

  4. Li S.F., Mataga P.A., 1996. Dynamic crack propagation in piezoelectric materials- -part I. electrode solution. J Mech Phys Solids 44, 1799–1830.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Li S.F., Mataga P.A., 1996. Dynamic crack propagation in piezoelectric materials- -part II. Vacuum solution. J Mech Phys Solids 44, 1831–1866.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Chen Z.T., Yu S.W., 1997. Anti-plane Yoffe crack problem in piezoelectric materials. Int J Fracture 84, L41–L45.

    Google Scholar 

  7. Chen Z.T., Karihaloo B. L., Yu S.W., 1998. A Griffith crack moving along the interface of two dissimilar piezoelectric materials. Int J Fracture 91. 197–203.

    Article  Google Scholar 

  8. Kwon J.H., Lee K.Y., Kwon, S M., 2000. Moving crack in a piezoelectric ceramic strip under anti-plane shear loading. Mech Res Commun 27 327–332.

    Article  MATH  Google Scholar 

  9. Kwon J.H., Lee K.Y., 2000. Moving interfacial crack between piezoelectric ceramic and elastic layers. Eur J Mech A/Solids 19, 979–987.

    Article  MATH  Google Scholar 

  10. Li X.F., Fan T.Y., Wu X. F., 2000. A moving Mode-III crack at the interface between two dissimilar piezoelectric materials. Int J Engng Sci 38, 1219–1234.

    Article  Google Scholar 

  11. Yoffe E.H., 1951. The moving Griffith crack. Phil Mag 42, 739–750.

    MathSciNet  MATH  Google Scholar 

  12. Freund L.B., 1990. Dynamic Fracture Mechanics. Cambridge University Press, New York.

    Book  MATH  Google Scholar 

  13. Maugin G.A., 1988. Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam.

    MATH  Google Scholar 

  14. Stroh A.N., 1962. Steady state problems in anisotropic elasticity. J Math Phys 41, 77–103.

    MathSciNet  MATH  Google Scholar 

  15. Lothe J., Barnett D.M., 1976. Integral formalism for surface waves in piezoelectric crystals. Existence considerations. J Appl Phys 47, 1799–1807.

    Article  ADS  Google Scholar 

  16. Suo Z., Kuo C. M., Barnett D. M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40, 739–765

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Ting T.C.T., 1996. Anisotropic Elasticity: Theory and Applications. Oxford University Press, Oxford.

    MATH  Google Scholar 

  18. Shindo Y., Watanabe K., Narita F., 2000. Electroelastic analysis of a piezoelectric ceramic with a central crack. Int J Engng Sci 38, 1–19.

    Article  Google Scholar 

  19. Daros C.H., Antes H., 2000. On strong ellipticity conditions for piezoelectric materials of the crystal classes 6 mm and 622. Wave Motion 31, 237–253.

    Article  MATH  Google Scholar 

  20. McHenry K.D., Koepke B.G., 1983. Electric fields effects on subcritical crack growth in PZT. In Fracture mechanics of Ceramics (Edited by R. C. Bradt, D. P. Hasselman and F. F. Lange ). 5, 337–352.

    Google Scholar 

  21. Park S.B., Sun C.T., 1995. Effect of electric fields on fracture of piezoelectric ceramics. Int J Fracture 70, 203–216.

    Article  Google Scholar 

  22. Kumar S., Singh R. N., 1996. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings. Acta Mater 44. 173–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Soh, A.K., Lee, K.L., Liu, J.X., Fang, D.N. (2003). Behavior of a Moving Griffith Crack in Piezoelectric Ceramics. In: Yang, J.S., Maugin, G.A. (eds) Mechanics of Electromagnetic Solids. Advances in Mechanics and Mathematics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0243-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0243-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7957-7

  • Online ISBN: 978-1-4613-0243-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics