Skip to main content

The Arithmetic of Weierstrass Points on Modular Curves X 0 (p)

  • Chapter
Galois Theory and Modular Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 11))

Abstract

The purpose of this paper is to describe some recent results regarding the arithmetic properties of Weierstrass points on modular curves X 0 (p) for primes p. We begin with some generalities; most of these can be found, for example, in the book of Farkas and Kra [F-K]. Suppose that X is a compact Riemann surface of genus g ≥2. If γ is a positive integer, then let H r (X) denote the space of holomorphic r-differentials on X. Each H r (X) is a finite-dimensional vector space over ℂ; we denote its dimension by d r (X). A point Q ∈ X is called an r-Weierstrass point if there exists a non-zero differential wH r (X) such that

$${\operatorname{ord} _{Q\omega }} \geqslant {d_r}\left( X \right)$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-S. Ahlgren and K. Ono, Weierstrass points on X o (p) and supersingular j-invariants, Math. Ann. 325 (2003), 355–368.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Ahlgren and M. Papanikolas, Higher Weierstrass points on X o (p), Trans. Amer. Math. Soc. 355 (2003), 1521–1535.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. O. L. Atkin, Weierstrass points at cusps of X O (N), Ann. of Math. 85 (1967), 42–45.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. M. Farkas and I. Kra, “Riemann surfaces,” Springer-Verlag, New York, 1992.

    Google Scholar 

  5. M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin’s orthogonal polynomials, in “Computational perspectives on number theory (Chicago, IL,1995),” Amer. Math. Soc., Providence, RI, 97–126, 1998.

    Google Scholar 

  6. J. Lehner and M. Newman, Weierstrass points on Γ0 (N), Ann. of Math. 79 (1964), 360–368.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449–462.

    MathSciNet  MATH  Google Scholar 

  8. A. Ogg, On the Weierstrass points of Xo(N), Illinois J. Math. 22 (1978), 31–35.

    MathSciNet  MATH  Google Scholar 

  9. D. Rohrlich, Weierstrass points and modular forms, Illinois J. Math. 29 (1985), 134–141.

    MathSciNet  MATH  Google Scholar 

  10. H. P. F. Swinnerton-Dyer, On P-adic representations and congruences for mod- ular forms, in “Modular functions of one variable, III,” 1–55, Lecture Notes in Mathematics, 350. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ahlgren, S. (2004). The Arithmetic of Weierstrass Points on Modular Curves X 0 (p). In: Hashimoto, Ki., Miyake, K., Nakamura, H. (eds) Galois Theory and Modular Forms. Developments in Mathematics, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0249-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0249-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7960-7

  • Online ISBN: 978-1-4613-0249-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics