Skip to main content

On Some Pseudoelastic Solutions in the Spinoidal Region for the One-Dimensional Martensite Phase Transitions

  • Chapter
Nonsmooth/Nonconvex Mechanics

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 50))

  • 308 Accesses

Abstract

For a pseudo-elastic bar model with internal variable, simple non-uniform solutions for the axial extension problem are derived, including the spinoidal region. The variable may represent damage distribution. The theory is implemented to the necking problem of an extended pseudo-elastic bar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aifantis, E., and Serrin, J. (1983a). The mechanical theory of fluid interfaces and Maxwell’s rule. Jnl of Colloid and Interface Science, 96 (2): 517–529.

    Article  Google Scholar 

  • Aifantis, E., and Serrin, J. (1983b). Equilibrium solutions in the mechanical theory of fluid microstructures. Jnl of Colloid and Interface Science, 96 (2): 530–547.

    Article  Google Scholar 

  • Brandon,D., Lin, T., and Rogers, R.C. (1995). Phase transitions and hysteresis in non-local and order parameter models. Meccanica, 30: 541–565.

    Article  MathSciNet  MATH  Google Scholar 

  • Carr,J., Gurtin,M., and Slemrod M. (1984). Structured phase transitions on a finite interval. Archives of Rational Mechanics and Analysis, 86: 317–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Carr,J., Gurtin,M., and Slemrod M. (1985). One dimensional structured phase transformations under prescribed loads. Journal of Elasticity, 15: 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Del Piero, G. (1997). One dimensional ductile brittle transition, yielding and structured deformations, In Proc. IUTAM Symposium “Variations de domaines et frontieres libres en mechanique de solides ”, Paris.

    Google Scholar 

  • Del Piero, G. (1998). Towards a unified approach to fracture, yielding and damage. In Proc. of the 9th International Symposium of Continuum Models and Discrete Systems, Instabul.

    Google Scholar 

  • Ericksen, J.L. (1991). Equilibrium of bars. Journal of Elasticity, 11: 191–201.

    Google Scholar 

  • Ericksen,J.L. (1991). Introduction to the thermodynamics of solids. Chapman and Hall, London.

    MATH  Google Scholar 

  • Falk, F. (1983). Ginburg-Landau theory of static domain walls in shape memory alloys. Z. Phys. B-Condensed Matter, 51: 177–185.

    Article  Google Scholar 

  • Kevorkian, J., and Cole,J. (1981). Perturbation methods in applied mathematics. Springer Verlag, New York.

    MATH  Google Scholar 

  • Khachaturyan, A. (1983). The theory of structural transformations in solids. John Wiley and Sons, New York.

    Google Scholar 

  • Lazopoulos, K.A. (1995). Beam buckling as a coexistence of phases phenomenon. Eur. J.Mech. A/Solids, 14 (4): 589–604.

    MathSciNet  MATH  Google Scholar 

  • Lazopoulos, K.A. and Ogden, R.W. (1998). Non-linear elasticity theory with discontinuous internal variables. Math. and Mech. of Solids, 3: 29–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C.T., Kunsmann, H., Otsuka, K., and Wuttig, M. (1992). Shape-memory materials and phenomena-fundamental aspects and applications. Mater. Res. Soc. Symp., 246.

    Google Scholar 

  • Nadai, A. (1950). Theory of flow and fracture in solids. McGraw-Hill New York etc.

    Google Scholar 

  • Nayfeh, A. (1973). Perturbation methods. Wiley,New York, etc.

    MATH  Google Scholar 

  • Parry, G.P. (1987). On internal variable models of phase transitions. Journal of Elasticity, 17: 63–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, R.C. (1996). Some remarks on non-local interactions and hysteresis in phase transitions. Cont. Mech. and Therm, 8: 65–73.

    Article  MATH  Google Scholar 

  • Rogers, R.C., and Truskinovski, L. (1997). Discretization and hysteresis. Physica B, 233: 370–375.

    Article  Google Scholar 

  • Salje, E.K.H. (1993). Phase transitions in ferroelastic and coelastic crystals. Cambridge Univ.Press.

    Google Scholar 

  • Truskinovski, L., and Zanzotto, G. (1996). Ericksen’s bar revisited: energy wiggles. Jnl. Mech. Phys. Solids, 44 (8): 1371–1408.

    Article  Google Scholar 

  • Vainchtein, A., Healy, T., Rosakis, P., and Truskinovski, L. (1998). The role of the spinoidal region in one-dimensional martensitic phase transitions. Physica D, 115: 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Washizu, K. (1975). Variational methods in elasticity and plasticity. 2nd ed., Pergamon Press, Oxford, New York, etc.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor P.D. Panagiotopoulos.

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lazopoulos, K.A. (2001). On Some Pseudoelastic Solutions in the Spinoidal Region for the One-Dimensional Martensite Phase Transitions. In: Gao, D.Y., Ogden, R.W., Stavroulakis, G.E. (eds) Nonsmooth/Nonconvex Mechanics. Nonconvex Optimization and Its Applications, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0275-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0275-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7973-7

  • Online ISBN: 978-1-4613-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics