Skip to main content

Global Minimization and Parameter Estimation in Computational Biology

  • Chapter
Advances in Convex Analysis and Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 54))

  • 658 Accesses

Abstract

Two important problems in computational biology are the prediction of the structure of a protein, given its sequence of amino acids (the protein folding problem), and the docking of a ligand on a protein (drug design). Both of these problems require the computation of the global minimum (or near global minimum) of a differentiable function with many local minima. The Convex Global Underestimator (CGU) algorithm for solving this type of problem has been developed and implemented and successfully tested on a variety of structure prediction and docking problems. The function representing the potential energy of a protein molecule in terms of its dihedral (backbone) angles (a vector Φ)) has approximately 2n independent variables for a protein consisting of n amino acids.

Also, the function contains parameters (α) which must be adjusted so that the structure (determined by the dihedral angles) at the global minimum corresponds to known protein molecular structures. A new algorithm has been developed and implemented which has successfully solved this problem for a number of small test molecules. A structural error function ρ(Φ, α) is defined which measures the error between the global minimum Φ and the known native state value of Φ. This global minimum is a function of α, and the algorithm finds a minimum in the parameter space of the structural error function ρ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler, T. and Dill, K. (1996). A fast comformational search strategy for finding low energy structures of model proteins. Protein Science, 5: 2037–2043.

    Article  Google Scholar 

  2. Bishop, T., Heller, H., and Schulten, K. (1997). Molecular dynamics on parallel computers: applications for theoretical biophysics. In Kalia, R. and Vashishta, P., editors, Toward Teraflop Computing and New Grand Challenge Applications, pages 129–138.

    Google Scholar 

  3. Boczko, E. and Brooks, C. (1995). First-principles calculation of the folding free energy of a three-helix bundle protein. Science, 269: 393–396.

    Article  Google Scholar 

  4. Chan, H. and Dill, K. (1993). The protein folding problem. Physics Today, February 1993: 24–32.

    Google Scholar 

  5. Covell, D. (1992). Folding protein alpha-carbon chains into compact forms by Monte Carlo methods. Proteins: Struct Funct Genet, 14: 409–420.

    Article  Google Scholar 

  6. Covell, D. (1994). Lattice model simulations of polypeptide chain folding. J Mol Biol, 235: 1032–1043.

    Article  Google Scholar 

  7. Dill, K. (1990). Dominant forces in protein folding. Biochemistry, 29 (31): 7133–7155.

    Article  Google Scholar 

  8. Dill, K. and Chan, H. (1997). From Levinthal to pathways to funnels. Nature Structural Biology, 4 (1): 10–19.

    Article  Google Scholar 

  9. Dill, K., Phillips, A., and Rosen, J. (1997a). Molecular structure prediction by global optimization. In et al, I. B., editor, Developments in Global Optimization, pages 217–234.

    Google Scholar 

  10. Dill, K., Phillips, A., and Rosen, J. (1997b). Protein structure and energy landscape dependence on sequence using a continuous energy function. Journal of Computational Biology, 4 (3): 227–239.

    Article  Google Scholar 

  11. Esposito, W. and Floudas, C. (1998). Global optimization in parameter estimation of nonlinear algebraic models via the error-invariable approach. Ind. Eng. Chemistry é4 Research, 37: 1841–1858.

    Article  Google Scholar 

  12. Foreman, K., Phillips, A., Rosen, J., and Dill, K. (1999). Comparing search strategies for finding global optimia on energy landscapes. Journal of Computational Chemistry, 20: 1527–1532.

    Article  Google Scholar 

  13. Gill, P., Murray, W., Saunders, M., and Wright, M. (1986). User’s guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming. Technical report, Department of Operation Research, Stanford University.

    Google Scholar 

  14. Goldstein, R., Luthy-Schulten, Z., and Wolynes, P. (1992). Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. USA, 89: 9029–9033.

    Article  Google Scholar 

  15. Govindarajan, S. and Goldstein, R. (1995). Searching for folding protein structures using optimixed energy functions. Biopolymers, 36: 43–51.

    Article  Google Scholar 

  16. Hao, M. and Scheraga, H. (1996). How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. USA, 93: 4984–4989.

    Article  Google Scholar 

  17. Hendlich, M., Lackner, M., Weitckus, S., and Floeckner, H. (1990). Identification of native protein folds amongst a large number of incorrect models–the calculation of low energy conformations from potentials of mean force. J. Mol. Biol., 216: 167–180.

    Article  Google Scholar 

  18. Hinds, D. and Levitt, M. (1994). Exploring conformational space with a simple lattice model for protein structure. J Mol Biol, 243: 668–682.

    Article  Google Scholar 

  19. Huber, T. and Torda, A. (1998). Protein fold recognition without Boltzmann statistics or explicit physical basis. Prot. Sci., 7: 142–149.

    Article  Google Scholar 

  20. Ingber, L. (1989). Very fast simulated re-annealing. J. Mathl. Comput. Modeling, 12: 967–973.

    Article  MathSciNet  Google Scholar 

  21. Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated annealing. Science, 220 (4598): 671–680.

    Article  MathSciNet  Google Scholar 

  22. Kolinski, A. and Skolnick, J. (1994). Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins: Struct Funct Genet, 18: 338–352.

    Article  Google Scholar 

  23. Koretke, K., Luthey-Schulten, Z., and Wolynes, P. (1998). Self-consistently optimized energy function for protein structure prediction by molecular dynamics. Proc. Natl. Acad. Sci. USA, 95: 2932–2937.

    Article  Google Scholar 

  24. Koretke, K., Luthy-Schulten, Z., and Wolynes, P. (1996). Self-consistency optimized statistical mechanical energy functions for sequence structure alignment. Prot. Sci., 5: 1043–1059.

    Article  Google Scholar 

  25. Kostrowicki, J. and Piela, L. (1991). Diffusion equation method of global minimization: performance for standard test functions. JOTA, 69: 269–284.

    Article  MathSciNet  Google Scholar 

  26. Kostrowicki, J., Piela, L., Cherayil, B., and Scheraga, H. (1991). Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms. J Phys Chem, 95: 4113–4119.

    Article  Google Scholar 

  27. Kostrowicki, J. and Scheraga, H. (1992). Application of the diffusion equation method for global optimization to oligopeptides. J Phys Chem, 96: 7442–7449.

    Article  Google Scholar 

  28. Kuntz, I., Crippen, G., Kollman, P., and Kimelman, D. (1976). Calculation of protein tertiary structure. J Mol Biol, 106: 983–994.

    Article  Google Scholar 

  29. Leopold, P., Montai, M., and Onuchic, J. (1992). Protein folding funnels: A kinetic approach to the sequence structure relationship. Proc Natl Acad Sci USA, 89: 8721–8725.

    Article  Google Scholar 

  30. Levitt, M. and Warshel, A. (1975). Computer simulation of protein folding. Nature, 253: 694–698.

    Article  Google Scholar 

  31. Li, Z. and Scheraga, H. (1987). Monte Carlo minimization approach to the multiple minima problem in protein folding. Proc Nati Acad Sci USA, 84: 6611–6615.

    Article  MathSciNet  Google Scholar 

  32. Maiorov, V. and Crippen, G. (1992). Contact potential that recognizes the correct folding of globular proteins. J. Mol. Biol., 227: 876–888.

    Article  Google Scholar 

  33. Maiorov, V. and Crippen, G. (1994). Learning about protein folding via potential functions. Proteins Struct. Funct. Genet., 20: 167–173.

    Article  Google Scholar 

  34. Mirny, L. and Shakhnovich, E. (1996). How to derive a protein folding potential? A new approach to an old problem. J. Mol. Biol., 264: 1164–1179.

    Article  Google Scholar 

  35. Mitchell, J., Phillips, A., Rosen, J., and Eyck, L. T. (2000). A coupled scanning optimization scheme for analyzing molecular interactions. In Floudas, C. and Pardalos, P., editors, Optimization in Computational Chemistry and Molecular Biology, pages 191–207.

    Google Scholar 

  36. Monge, A., Friesner, R., and Honig, B. (1994). An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Proc Nall Acad Sci USA, 91: 5027–5029.

    Article  Google Scholar 

  37. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R., and Schulten, K. (1997). NAMD–A parallel, object oriented molecular dynamics program. International Journal of Supercomputing Applications and High Performance Computing, 10: 251–268.

    Article  Google Scholar 

  38. O’Toole, E. and Panagiotopoulos, A. (1992). Monte Carlo simulation of folding transitions of simple model proteins using a chain growth algorithm J Chem Phys, 97: 8644–8652.

    Article  Google Scholar 

  39. Phillips, A., Rosen, J., and Dill, K. (2000). Energy landscape projections of molecular potential functions. In Floudas, C. and Pardalos, P., editors, Optimization in Computational Chemistry and Molecular Biology, pages 47–55.

    Google Scholar 

  40. Phillips, A., Rosen, J., and Walke, V. (1995). Molecular structure determination by global optimization. Dimacs Series in Discrete Mathematics and Theoretical Computer Science, 23: 181–198.

    Google Scholar 

  41. Ripoll, D. and Thomas, S. (1990). A parallel Monte Carlo search algorithm for the conformational analysis of proteins. Proc IEEE/ACM Supercomputing ‘90, pages 94–102.

    Google Scholar 

  42. Rosen, J., Phillips, A., Oh, S., and Dill, K. (2000). A method for parameter optimization in computational biology. Biophysics Journal, 79: 2818–2824.

    Article  Google Scholar 

  43. Shakhnovich, E., Farztdinov, G., Gutin, A., and Karplus, M. (1991). Protein folding bottlenecks: a lattice Monte Carlo simulation. Phys Rev Lett, 67: 1665–1668.

    Article  Google Scholar 

  44. Shakhnovich, E. and Gutin, A. (1990). Enumeration of all compact conformations of copolymers with random sequence of links. J Chem Phys, 93: 5967–5971.

    Article  Google Scholar 

  45. Shrivastava, I., Vishveshwara, S., Cieplak, M., et al. (1995). Lattice models for rapidly folding protein-like heteropolymers. Proc. Natl. Acad. Sci. USA, 92: 9206–9209.

    Article  Google Scholar 

  46. Sippl, M., Hendlich, M., and Lackner, P. (1992). Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments: Development of strategies and construction of models for myoglobin, lysozyme, and thymosin beta 4. Protein Science, 1: 625–640.

    Article  Google Scholar 

  47. Skolnick, J. and Kolinski, A. (1990). Simulations of the Folding of a Globular Protein. Science, 250:1121–1125.

    Article  Google Scholar 

  48. Socci, N. and Onuchic, J. (1994). Folding kinetics of protein-like hetropolymers. J Chem Phys, 100: 1519–1528.

    Article  Google Scholar 

  49. Stillinger, F. (1985). Role of potential-energy scaling in the low-temperature relaxation behavior of amorphous materials. Phys. Rev. B, 32: 3134–3141.

    Article  Google Scholar 

  50. Struthers, M., Cheng, R., and Imperiali, B. (1996). Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science, 271: 342–345.

    Article  Google Scholar 

  51. Sun, S. (1993). Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Science, 2: 762–785.

    Article  Google Scholar 

  52. Sun, S., Thomas, P., and Dill, K. (1995). A simple protein folding algorithm using binary code and secondary structure constraints. Protein Engineering, 8 (8): 769–778.

    Article  Google Scholar 

  53. Thomas, P. and Dill, K. (1996). An iterative method for extracting energy-like quantities from protein structure. Proc. Natl. Acad. Sci. USA, 93: 11628–11633.

    Article  Google Scholar 

  54. Unger, R. and Moult, J. (1993). Genetic algorithms for protein folding simulations. J Mol Biol, 231: 75–81.

    Article  Google Scholar 

  55. Vajda, S., Jafri, M., Sezerman, O., and DeLisi, C. (1993). Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization. Biopolymers, 33: 173–192.

    Article  Google Scholar 

  56. Wallqvist, A., Ullner, M., and Covell, D. (1994). A simplified amino acid potential for use in structure predictions of proteins. Proteins: Struct Funct Genet, 18: 267–280.

    Article  Google Scholar 

  57. Wilson, C. and Doniach, S. (1989). A computer model to dynamically simulate protein folding–Studies with crambin. Proteins: Struct Funct Genet, 6: 193–209.

    Article  Google Scholar 

  58. Wolynes, P., Onuchic, J., and Thirumalai, D. (1995). Navigating the folding routes. Science, 267: 1619–1620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rosen, J.B., Phillips, A.T., Oh, S.Y., Dill, K.A. (2001). Global Minimization and Parameter Estimation in Computational Biology. In: Hadjisavvas, N., Pardalos, P.M. (eds) Advances in Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0279-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0279-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6942-4

  • Online ISBN: 978-1-4613-0279-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics