Skip to main content

Existence of Solutions for Generalized Vector Variational-Like Inequalities

  • Chapter
Vector Variational Inequalities and Vector Equilibria

Abstract

This paper aims to introduce a new kind of Variational Inequality, i.e. a ‘Generalized Vector Variational-Like Inequality’ which includes several classic and well-known Variational Inequalities as special cases. As an application of the Knaster-Kuratowski-Mazurkiewicz principle - in the extended form given by Fan in 1961 -, we prove that there exist solutions for our Generalized Vector Variational-Like Inequality under reasonable hypotheses. These results generalize corresponding results given by Chen et al. in (1992), Giannessi (1980), Harker and Pang (1990), Hartman and Stampacchia (1966), Isac (1990), Lee et al. (1993), Noor (1988), Saigal (1976), Siddiqi et al. (1995) and Yang (1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubin J. P., “Applied Functional Analysis”. Wiley-Interscience New York 1975.

    Google Scholar 

  2. Chen G.-Y., “Existence of solutions for a vector variational inequality: An extension of the Hartman-Stampacchia theorem”. Jou. Optimiz. Theory Appls., Vol. 74, No. 3, 1992, pp. 445–456.

    Article  MATH  Google Scholar 

  3. Chen G.-Y. and Cheng G. M., “Vector variational inequality and vector optimization”. Lecture Notes in Econ. and Mathem. System Vol.285, 1987, Springer-Verlag, 1987, pp. 408–416.

    Google Scholar 

  4. Chen G.-Y. and Craven B. D., “A vector variational inequality and optimization over an efficient set”. Zeitscrift für Operations Research, Vol. 3, 1990, pp. 1–12.

    Article  MathSciNet  Google Scholar 

  5. Chen G.-Y. and Yang X. Q.. “The vector complementarity problem and its equivalence with the weak minimal element in ordered sets”. Jou. Mathem., Analysis, Appls., Vol. 153, 1990, pp. 135–158.

    Google Scholar 

  6. Cottle R.W. and Yao J. C., “Pseudo-monotone complementarity problems in Hilbert spaces”. Jou. Optimiz. Theory. Appas., Vol. 75, No. 2, 1992, pp. 281–295.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan K., “A generalization of Tychonoff’s fixed point theorem”. Mathem. Annalen, Vol. 142, 1961, pp. 305–310.

    Article  MATH  Google Scholar 

  8. Fang S. C. and Peterson E. L., “Generalized variational inequalities”. Jou. Optimiz. Theory. Appls., Vol. 38, 1982, pp. 363–383.

    Article  MathSciNet  MATH  Google Scholar 

  9. Giannessi F., “Theorems of alternative, quadratic programs and complementarity problems”. In “Variational Inequalities and Complementarity Problems”, (edited by R. W. Cottle, F. Giannessi and J. -L. Lions) J. Wiley and sons, Chichester, England, 1980, pp. 151–186.

    Google Scholar 

  10. Harker P. T. and Pang J. S., “Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of Theory. Algorithms and Appls.”. Mathem. Programming, Vol. 48, 1990, pp. 161–220.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartman G. J. and Stampacchia G., “On some nonlinear elliptic differential functional equations”. Acta Mathematica, Vol. 115 1966, pp. 271–310.

    Article  MathSciNet  MATH  Google Scholar 

  12. Isac G., “A special variational inequality and the implicit complementarity problem”. Jou. of the Faculty of Sciences, University of Tokyo, Section IA, Mathematics, Vol. 37, 1990, pp. 109–127.

    MathSciNet  MATH  Google Scholar 

  13. Lee G.M., Kim D. S., Lee B.S. and Cho S. J., “Generalized vector variational inequality and fuzzy extension”. Appl. Mathem. Lett., Vol. 6, No. 6, 1993, pp. 47–51.

    Article  MathSciNet  MATH  Google Scholar 

  14. Luc D.T., “Theory of Vector Optimization”. Lecture Notes in Econ. and Mathem. Systems“, Vol. 319, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  15. Luc D.T. and Vargas C., “A saddle point theorem for set-valued maps”. Nonlinear Anal. TMA, Vol. 18, 1992, pp. 1–7.

    Article  MATH  Google Scholar 

  16. Noor M.A., “General variational inequality”. Applied Mathem. Letters, Vol. 1, 1988, pp. 119–122.

    Article  MATH  Google Scholar 

  17. Park S., “On minimax inequalities on spaces having certain contractible subsets”. Bull. Austral. Mathem. Soc., Vol. 47, 1993, pp. 25–40.

    Article  MATH  Google Scholar 

  18. Saigal R., “Extension of the generalized complementarity problem”. Mathem.matics of Operations Research, Vol. 1, 1976, pp. 260–266.

    Article  MathSciNet  MATH  Google Scholar 

  19. Siddiqi A.H., Ansari Q.H. and Khaliq A., “On vector variational inequalities”. Jou. Optimiz. Theory Appls., Vol. 84, 1995, pp. 171–180.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tanaka T., “Existence theorems for cone saddle points of vector-valued function in infinite-dimensional spaces”. Jou. Optimiz. Theory Appls., Vol. 62, 1989, pp. 127–138.

    Article  MATH  Google Scholar 

  21. Tanaka T., “Generalized quasiconvexities, cone saddle points and a minimax theorem for vector valued functions”. Jou. Optimiz. Theory Appls., Vol. 81, 1994, pp. 355–377.

    Article  MATH  Google Scholar 

  22. Yang X. Q., “Vector variational inequality and its duality”. Nonlinear Anal. TMA, Vol. 21, 1993, pp. 869–877.

    Article  MATH  Google Scholar 

  23. Yang X.Q., “Generalized convex functions and vector variational inequalities”. Jou. Optimiz. Theory Appls., Vol. 79, 1993, pp. 563–580.

    Article  MATH  Google Scholar 

  24. Lu P. L., “Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives”. Jou. Optimiz. Theory Appls., Vol. 14, 1974, pp. 319–377.

    Article  Google Scholar 

  25. Yuan X. Z., “KKM Theory and Applications in Nonlinear Analysis”.Marcel Dekker, New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chang, SS., Thompson, H.B., Yuan, G.XZ. (2000). Existence of Solutions for Generalized Vector Variational-Like Inequalities. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria. Nonconvex Optimization and Its Applications, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0299-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0299-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7985-0

  • Online ISBN: 978-1-4613-0299-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics