Skip to main content

Progress in Collective Flow Studies from the Onset to Bevalac/SIS

  • Chapter
Advances in Nuclear Dynamics
  • 69 Accesses

Abstract

Collective flow in heavy ion collisions was first observed experimentally more than a decade ago at the Bevalac by the Plastic Ball collaboration. Although early calculations had suggested that measurement of the flow would place tight constraints on the nuclear equation of state, uncertainties in other input parameters of microscopic models, which also affect the flow, led to large ambiguities in the equation of state. This talk will discuss recent flow studies that attempt to overcome these difficulties. The EOS and FOPI experiments at the Bevalac and SIS accelerators have measured flow in the 200–2000A·MeV bombarding energy range with better acceptance, particle identification, and systematics than was previously available. Meanwhile, programs at MSU and GANIL are studying the disappearance of flow around 50A·MeV. Systematic comparison of these data with predictions of microscopic models is beginning to reduce the ambiguities in the extraction of physics quantities. Also, new directions in flow studies, such as the flow of produced particles and radial flow, offer the possibility of further information from flow studies. Recent accomplishments and new directions in flow studies are discussed, and areas where further study is needed are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Stöcker and W. Greiner, Phys. Rep. 137, 227 (1986).

    Article  ADS  Google Scholar 

  2. The Nuclear Equation of State, W. Greiner and H. Stöcker, ed., NATO ASI Series B, Vol 216A (1989).

    Google Scholar 

  3. J. Cugnon, T. Mizutani, and J. Vandermeulen, Nucl. Phys. A352, 505 (1981).

    ADS  Google Scholar 

  4. J. Molitoris, et al., Phys. Rev. C33, 867 (1986).

    ADS  Google Scholar 

  5. H. A. Gustafsson, et al., Phys. Rev. Lett. 52, 1590 (1984).

    Article  ADS  Google Scholar 

  6. B. Blättel, V. Koch, and U. Mosel, Rep. Prog. Phys. 56, 1 (1993).

    Article  ADS  Google Scholar 

  7. V. Koch, et al., Nucl. Phys. A532, 715 (1991).

    ADS  Google Scholar 

  8. B. Blättel, et al., Phys. Rev. C43, 2728 (1991).

    ADS  Google Scholar 

  9. J. Aichelin, et al., Phys. Rev. Lett. 58, 1926 (1987).

    Article  ADS  Google Scholar 

  10. J. Zhang, S. Das Gupta, and C. Gale, Phys. Rev. C50, 1617 (1994).

    ADS  Google Scholar 

  11. G. F. Bertsch, et al., Phys. Lett. B189, 384 (1987).

    ADS  Google Scholar 

  12. G. Peilert, et al., Phys. Rev. C38, 1402 (1989).

    ADS  Google Scholar 

  13. C. Gale and S. Das Gupta, Phys. Rev. C42, 1577 (1990).

    ADS  Google Scholar 

  14. D. Klakow, G. Welke, W. Bauer, Phys. Rev. C48, 1982 (1993).

    ADS  Google Scholar 

  15. J. Jänicke and J. Aichelin, Nucl. Phys. A547, 542 (1992).

    ADS  Google Scholar 

  16. G. Rai, et al., IEEE Trans. Nucl. Sci. 37, 56 (1990).

    Article  ADS  Google Scholar 

  17. A. Gobbi et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 324, 156 (1993).

    Article  ADS  Google Scholar 

  18. G. D. Westfall et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 238, 347 (1985).

    Article  ADS  Google Scholar 

  19. P. Danielewicz and G. Odyniec, Phys. Lett. 157B, 146 (1985).

    ADS  Google Scholar 

  20. M. D. Partlan, et al., preprint LBL-36280, submitted to Phys. Rev. Lett.

    Google Scholar 

  21. S. Wang, et al., Phys. Rev. Lett., in press (1995).

    Google Scholar 

  22. H. A. Gustafsson, et al., Mod. Phys. Lett. A3, 1323 (1988).

    ADS  Google Scholar 

  23. J. Gosset, et al., in Ref. 2.

    Google Scholar 

  24. Q. Pan and P. Danielewicz, Phys. Rev. Lett. 70, 2062 (1993).

    Article  ADS  Google Scholar 

  25. S. A. Bass, et al., Phys. Lett. B302, 381 (1993).

    ADS  Google Scholar 

  26. S.A. Bass, et al., Phys. Rev. bf C51, R12 (1995).

    ADS  Google Scholar 

  27. D. Pelte, W. Reisdorf, T. Wienold, and the FOPI collaboration, GSI 09–93.

    Google Scholar 

  28. J. Kintner and T. Wienold, private communications.

    Google Scholar 

  29. D. Krofcheck, et al., Phys. Rev. Lett. 63, 2028 (1989).

    Article  ADS  Google Scholar 

  30. G. D. Westfall, et al., Phys. Rev. Lett. 71, 1986 (1993).

    Article  ADS  Google Scholar 

  31. W. M. Zhang, et al., Phys. Rev. C42, R491 (1990).

    ADS  Google Scholar 

  32. J. P. Sullivan, et al., Phys. Lett. B249, 8 (1990).

    ADS  Google Scholar 

  33. J. C. Angelique, et al., contribution to XXXI Interational Winter Meeting on Nuclear Physics, Bormio, ed I. Iori

    Google Scholar 

  34. R. Pak, contribution to this conference.

    Google Scholar 

  35. H. H. Gutbrod, et al., Phys. Lett. B216, 267 (1989).

    ADS  Google Scholar 

  36. C. Hartnack, et al., Mod. Phys. Lett. A9, 1151 (1994).

    ADS  Google Scholar 

  37. D. Lambrecht, et al., Z. Phys. A350, 115 (1994).

    ADS  Google Scholar 

  38. L. B. Venema, et al., Phys. Rev. Lett. 71, 835 (1993).

    Article  ADS  Google Scholar 

  39. D. Brill, et al., Phys. Rev. Lett. 71, 336 (1993).

    Article  ADS  Google Scholar 

  40. G. D. Westfall, et al., Phys. Rev. Lett. 37, 1202 (1976).

    Article  ADS  Google Scholar 

  41. P. J. Siemens and J. O. Rasmussen, Phys. Rev. Lett. 42, 880 (1979).

    Article  ADS  Google Scholar 

  42. S. C. Jeong, et al., Phys. Rev. Lett. 72, 3468 (1994).

    Article  ADS  Google Scholar 

  43. W. C. Hsi, et al., Phys. Rev. Lett. 73, 3367 (1994).

    Article  ADS  Google Scholar 

  44. M. A. Lisa, et al., preprint LBL-35504

    Google Scholar 

  45. H. W. Barz, et al., Nucl. Phys. A531, 453 (1991).

    ADS  Google Scholar 

  46. W. Bauer, et al., Phys. Rev. C47, R1838 (1993).

    ADS  Google Scholar 

  47. D. Heuer, et al., Phys. Rev. C50, 1943 (1994).

    ADS  Google Scholar 

  48. C. Kuhn, et al., Phys. Rev. C48, 1232 (1993).

    ADS  Google Scholar 

  49. G. J. Kunde, et al., Phys. Rev. Lett. 74, 38 (1995), and contribution to this conference.

    Article  ADS  Google Scholar 

  50. J. Barrette, et al., Phys. Rev. Lett. 73, 2532 (1994).

    Article  ADS  Google Scholar 

  51. A. Bonasera and L. P. Csernai, Phys. Rev. Lett. 59, 630 (1987), and contribution to this conference.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Lisa, M.A. (1996). Progress in Collective Flow Studies from the Onset to Bevalac/SIS. In: Bauer, W., Mignerey, A. (eds) Advances in Nuclear Dynamics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0367-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0367-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8019-1

  • Online ISBN: 978-1-4613-0367-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics