Skip to main content
  • 194 Accesses

Abstract

Superposition methods—as used in many lattice diffusion calculations to estimate joint probabilities from limited information on lower order correlations—are here reviewed in the general inhomogeneous context. The Kirkwood-Kikuchi-Barker (KKB) superposition principle is shown to be a special case of the application of combinatorial Möbius function techniques over a Boolean lattice of partitions into clusters, or motifs which uses a logarithmic/exponential device. This method is conceptually distinct from the approach utilizing the linear algebra of probabilities over an equal a priori probability phase space. It is shown that the probabilities produced by KKB superposition in general fail to satisfy the basic rules of conservation of probability; and a new algorithm is given for embedding the Möbius formalism into probability space. The general problem of superposition of probabilities is formulated in terms of linear convex analysis. The concept of marginal coordinate systems generalizing both the Möbius formalism and the idea of conditional probabilities is introduced and pidgeonhole cluster coordinates developed. The linear convex formalism additionally permits the use of interior point methods for the determination of the permissible polytope in probability space and provides an exact representation of the configurational entropy which incorporating all correlations in finite structures. It is shown that knowledge of the permissible polytope in probability space can restrict the class of permissible structures so severely that entropy maximization is unnecessary; and it is suggested that this is particularly true in the case of ordered structures. The equilibrium configurational free energy computation is discussed in the light of linear convex theory and the ergodic hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. G. Brush, Kinetic Theory (Pergamon Press, 1972), Vol. 3, p. 59.

    Google Scholar 

  2. R. Kikuchi and S. G. Brush, J. Chem. Phys. 47, 195 (1967).

    Article  ADS  Google Scholar 

  3. R. Kikuchi, Phys. Rev. 88, 988 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  4. G. BirkhofF and S. MacLane, A Survey of Modern Algebra (MacMillan, 1953), p. 351ff

    MATH  Google Scholar 

  5. G. Birkhoff and T. Bartree, Modern Applied Algebra (McGraw-Hill, 1970), p. 274.

    MATH  Google Scholar 

  6. J. A. Simmons, Prog. Theor. Phys. Suppl. 115, 351 (1994).

    Article  MathSciNet  Google Scholar 

  7. C. Domb in Phase Transformations and Critical Phenomena, edited by C. Domb and M. S. Green, (Academic Press, New York 1974).

    Google Scholar 

  8. R. J. Wilson, in Combinatorial Mathematics and its Applications, edited by D. J. A. Welsh, (Academic Pres, New York 1971), p. 315

    Google Scholar 

  9. R. J. Wilson, Finite Operator Calculus, (Academic Press, New York 1975), p. 83.

    Google Scholar 

  10. Guozhong An, Ph.D. Thesis, The University of Washington, 1989.

    Google Scholar 

  11. V. A. Malyshe and R. A. Minlos, Gibbs Random Fields, (Kluwer Academic Publishers, 1991).

    Google Scholar 

  12. L. Comtet, Advanced Combinatorics, (D. Reidel, 1974), p. 176ff.

    MATH  Google Scholar 

  13. R. D. Levine, in Maximum Entropy and Bayesian Methods in Applied Statistics, edited by J. H. Justice, (Cambridge Univ. Press, 1986), p. 85

    Google Scholar 

  14. T. M. Cover and J. A. Thomas, Elements of Information Theory, (John Wiley and Sons, 1991).

    Book  MATH  Google Scholar 

  15. P. Huard, in Nonlinear Programming, edited by J. Abadie, (North Holland, 1967), p. 209

    Google Scholar 

  16. N. K. Karmarkar, Combinatorica, 4, 373 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Eriksson, Math. Prog. 18, 146 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Fletcher, Practical Methods of Optimization. Second edition, (John Wiley and Sons, 1987), p. 219.

    MATH  Google Scholar 

  19. J. M. Sanchez, F. Ducastelle and D. Gratias, Physica A 128, 334 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  20. J. W. D. Connolly and A. R. Williams, Phys. Rev. B 27, 5169 (1983).

    Article  ADS  Google Scholar 

  21. P. Cenedese, Private Communication.

    Google Scholar 

  22. R. Tolman, The Principles of Statistical Mechanics, (Oxford, Clarendon Press 1938).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Simmons, J.A. (1996). On the Superposition of Probabilities. In: Morán-López, J.L., Sanchez, J.M. (eds) Theory and Applications of the Cluster Variation and Path Probability Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0419-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0419-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8043-6

  • Online ISBN: 978-1-4613-0419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics