Skip to main content

Internal Composition of Striatal Grafts: Light and Electron Microscopy

  • Chapter
The Basal Ganglia IV

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

Abstract

Grafts of fetal rat striatal primordium implanted into a host rat striatum, previously lesioned using the excitotoxins kainic, ibotenic or quisqualic acids, develop features reminiscent of adult neostriatum with respect to cell types, transmitters and receptors (Isacson et al., 1986; Clarke et al., 1988; DiFiglia et al., 1988; Graybiel et al., 1989; Helm et al., 1990; Liu et al., 1990; Zhou, 1990). Evidence is also accruing for the formation of afferent and efferent graft-host connections (Pritzel et al., 1986; Clarke et al., 1988; Wictorin et al., 1989, 1990a and b, 1991; Xu et al., 1990). A striking feature of the grafts is, however, the clearly heterogeneous distribution of many of the markers, with areas or “patches” containing high concentrations of eg. AChE or dopaminergic afferents separated by “non-patch” regions with low concentrations of these markers. Simple explanations for this heterogeneity such as the intermingling of neurons of both graft and host origin or the presence of large areas of non-neuronal tissue, have been ruled out using tritiated thymidine pre-labelling of either the donor tissue or recipient animals (Liu et al., 1990) and cross-species grafting followed by identification of the graft tissue with a species-specific neuronal marker (Wictorin et al., 1991). Furthermore, it seems unlikely that this “patch/non-patch” arrangement could be explained by the well-known organization of the mature striatum of striosomes and matrix (Graybiel, 1990), since in the normal rat striatum this patterning is not as easily identifiable using the marker AChE or staining for dopaminergic afferents as in the striatal grafts and, moreover, markers of both the adult striosome and matrix compartments have been located together within the grafts’ “patch” regions (Graybiel et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolam, J.P., Clarke, D.J., Smith, A.D., and Somogyi, P., 1983, A type of aspiny neuron in the rat neostriatum accumulates [3H]-γ-aminobutyric acid:combination of Golgi-staining, autoradiography and electron microscopy, J. Comp. Neurol. 213:121–134.

    Article  PubMed  CAS  Google Scholar 

  • Bolam J.P., Ingham, C.A., 1990, Combined morphological and histochemical techniques for the study of neuronal microcircuits, in: “Handbook of Chemical Neuroanatomy, Volume 8, Neuronal microcircuits- combined morphological, immunocytochemical and electrophysiological techniques for the study of synaptic interactions between identified CNS neurons,” A. Van den Pol, F. Wouterlood, eds., Elsevier, Amsterdam, pp. 125–198.

    Google Scholar 

  • Bolam, J.P., Powell, J.F., Wu, J-Y. and Smith, A.D., 1985, Glutamate decarboxylase immunoreactive structures in the rat neostriatum:A correlated light and electron microscopic study including a combination of golgi impregnation with immunocytochemistry, J. Comp. Neurol. 237:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Bolam J.P., Somogyi, P., Totterdell, S., and Smith, A.D., 1981, A second type of striatonigral neuron:a comparison between retrogradely labelled and golgi-stained neurons at the light and electron microscope levels, Neuroscience 6:2141–2157.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.T., Wilson, C.J., and Kitai, S.T., 1982, A Golgi study of rat neostriatal neurons:light microscopic analysis, J. Comp. Neurol. 208:107–126.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D.J., Dunnett, S.B., Isacson, O., Sirinathsinghji, D.J.S., and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions — 1. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway, Neuroscience 24:791–801.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., Schiff, L. and Deckel, A.W., 1988, Neuronal organization of fetal striatal grafts in kainite- and sham-lesioned rat caudate:light and electron microscopic observations, J. Neurosci. 8:1112–1130.

    PubMed  CAS  Google Scholar 

  • Freund, T.F., Martin, K.A.C., Smith, A.D., and Somogyi, P., 1983, Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axo-axonic and of presumed basket cells in synaptic contact with pyramidal neurons of the cat’s visual cortex, J. Comp. Neurol. 221:263–279.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C.A., Andrade, A.N., Lu Qui, I.F., and Rafols, J.A., 1974, The primate globus pallidus:a Golgi and electron microscopic study, J. Hirnforsch, 15:75–93.

    PubMed  CAS  Google Scholar 

  • Graybiel, A.M., Liu, F.C., and Dunnett, S.B., 1989, Intrastriatal grafts derived from fetal striatal primordia.I. phenotopy and modular organization, J. Neurosci. 9:3250–3271.

    PubMed  CAS  Google Scholar 

  • Graybiel, A.M., 1990, Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci. 13:244–253.

    Article  PubMed  CAS  Google Scholar 

  • Helm, G.A., Palmer, P.E., and Bennett, J.P., 1990, Fetal neostriatal transplants in the rat:a light and electron microscopic Golgi study, Neuroscience 37:735–756.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, S.M., Raine, L., and Fanger, H., 1981, The use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques:a comparison between ABC and unlabelled antibody (PAP) procedures, J. Histochem. Cytochem., 29:577–580.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, C.A., Bolam, J.P., and Smith, A.D., 1988, GABA-immunoreactive synaptic boutons in the rat basal forebrain:comparison of neurons that project to the neocortex with pallidosubthalamic neurons, J. Comp. Neurol. 273:263–282.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dawbarn, D., Brundin, P., Gage, F.H., Emson, P.C., Bjorklund, A., 1987, Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by immunocytochemistry and receptor autoradiography, Neuroscience 22:481-497.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dunnett, S.B., and Bjorklund, A., 1986, Behavioural recovery in an animal model of Huntington’s disease, Proc. Natl. Acad. Sci. USA, 83:2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Izzo, P.N., Graybiel, A.M., and Bolam, J.P., 1987, Characterization of substance P-and [met]encephalin-immmunoreactive neurons in the caudate nucleus of cat and ferret by a single section Golgi procedure, Neuroscience 20:577–587.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., and Kitai, S.T., 1988, Glutamate decarboxylase immunoreactive neurons in rat neostriatum:their morphological types and populations, Brain Res. 447:346–352.

    Article  PubMed  CAS  Google Scholar 

  • Levey, A.I., Bolam, J.P., Rye, D.B., Hallanger, A., Mesulam, M-M., and Wainer, B.H., 1986, A light and electron microscopic procedure for sequential double antigen localization using diaminobenzidine and benzidine dihydrochloride, J. Histochem. Cytochem. 34:1449–1457.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F-C, Graybiel, A.M., Dunnett, S.B., and Baughman, R.W., 1990, Intrastriatal grafts derived from fetal striatal primordia:2. Reconstitution of cholinergic and dopaminergic systems, J. Comp. Neurol. 295:1–14.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, J.P., Walker, P.D., Zemanick, M.C., Weber, A.B., Kaplan, L.I., and Reynolds, M.A., 1985, Morphology of embryonic neostriatal cell suspensions transplanted into adult neostriata, Dev. Brain Res. 23:282–286.

    Article  Google Scholar 

  • Oertel, W.H., and Mugnaini, E., 1984, Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relation to other neuronal systems, Neurosci. Lett. 47:233–238.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet, C.C., Miller, P.E., Hemmings, Jr., H.C., Walaas, S.I., and Greengard, P., 1984, DARPP-32, a dopamine-and adenosine 3’:5’-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization in rat brain, J. Neurosci. 4:111–124.

    PubMed  CAS  Google Scholar 

  • Pritzel, M., Isacson, 0., Brundin, P., Wiklund, L., and Bjorklund, A., 1986, Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats, Exp. Brain Res. 65:112–126.

    Article  PubMed  CAS  Google Scholar 

  • Ramon-y-Cajal, S., 1911, “Histologie du Système Nerveux de l’homme et des Vertébrés”, Maloine, Paris.

    Google Scholar 

  • Roberts, R.C., and DiFiglia, M., 1990, Long term survival of GABA-, enkephalin-, NADPH-diaphorase- and calbindin-d28k-containing neurons in fetal striatal grafts, Brain Res. 532:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford, A., Garcia-Munoz, M., Dunnett, S.B., and Arbuthnott, G.W., 1987, Electrophysiological demonstration of host cortical inputs into striatal grafts, Neurosci. Lett. 83:276–281.

    Article  Google Scholar 

  • Smith, Y., Parent, A., Seguela, P., and Descarries, L., 1987, Distribution of GABA-immunoreactive neurons in the basal ganglia of the squirrel monkey, J. Comp. Neurol. 259:50–64.

    Article  PubMed  CAS  Google Scholar 

  • Totterdell, S., Bolam, J.P., and Smith, A.D., 1984, Characterization of pallidonigral neurons in the rat by a combination of Golgi-impregnation and retrograde transport of horseradish peroxidases:their monosynaptic imput from the neostriatum, J. Neurocytol. 13:593–616.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.D., Chovanes, G.I., and McAllister II, J.P., 1987, Identification of acetylcholine-reactive neurons and neuropil in neostriatal transplants, J. Comp. Neurol. 259:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., 1992, Anatomy and connectivity of intrastriatal striatal transplants, Prog. in Neurobiol. 38:611–639

    Article  CAS  Google Scholar 

  • Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W., and Bjorklund, A., 1989a, Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. III. Efferent projecting graft neurons and their relation to host afferents within the grafts, Neuroscience 30:313–330.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Clarke, D.J., Bolam, J.P., and Björklund, A., 1990a, Fetal striatal neurons grafted into the ibotenate lesioned striatum:efferent projections and synaptic contacts in the host globus pallidus, Neuroscience 37:301–315.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O., and Björklund, A., 1990b, Reformation of long axon pathways in adult rat CNS by human forebrain neuroblasts, Nature 347:556–558.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Lagenaur, C.F., Lund, R.D., and Björklund, A., 1991, Efferent projections to the host brain from intrastriatal striatal mouse-to-rat grafts:timecourse and tissue-type specificity as revealed by a mouse specific marker, Eur. J. Neurosci. 3:86–101.

    Article  PubMed  Google Scholar 

  • Xu, Z.C., Wilson, C.J., and Emson, P.C., 1990, Restoration of thalamostriatal projections in rat neostriatal grafts:an electron microscopic analysis, J. Comp. Neurol. 303:2–14.

    Google Scholar 

  • Xu, Z.C., Wilson, C.J., and Emson, P.C., 1992, Morphology of intracellularly stained spiny neurons in rat striatal grafts, Neuroscience 48:95–110.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.C., 1990, Connectivities of the striatal grafts and laminin guiding, in:“Neural Transplantation. From Molecular Basis to Clinical Application,” Prog. Brain Res. 82:441–458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Clarke, D.J., Wictorin, K., Dunnett, S.B., Bolam, J.P. (1994). Internal Composition of Striatal Grafts: Light and Electron Microscopy. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics