Skip to main content

Transport and Degradation of Water-Soluble Creosote-Derived Compounds

  • Chapter
Intermedia Pollutant Transport

Abstract

Creosote is the most extensively used insecticide and industrial wood preservative today. It is estimated that there are more than 600 wood-preserving plants in the United States, and their collective use of creosote exceeds 4.5xl06 kg/yr (von Rumker et al., 1975). Creosote is a complex mixture of more than 200 major individual organic compounds with differing molecular weights, polarities, and functionalities, along with dispersed solids and products of polymerization (Novotny et al., 1981). The major classes of compounds previously identified in creosote show that it consists of ∼85% (w/w) polynuclear aromatic compounds (PAH), ∼12% phenolic compounds, and ∼3% heterocyclic nitrogen, sulfur, and oxygen containing compounds (NSO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • American Public Health Association, 1985, “Standard methods for the examination of water and wastewater,” Sixteenth Edition.

    Google Scholar 

  • Balba, M.T., and Evans, W.C., 1980, The anaerobic dissimilation of benzoate by Pseudomonas aeruginosa coupled with Desulfovibrio valgaris, with sulphate as a terminal electron acceptor, Biochem. Soc. Trans, 8: 624.

    PubMed  CAS  Google Scholar 

  • Bennett, J.L., Updegraff, D.M., Pereira, W.E. and Rostad, C.E., 1985, Isolation and identification of four species of quinoline-degrading pseudomonads from a creosote-contaminated site at Pensacola, Florida, Microbios Letters, 29:147.

    CAS  Google Scholar 

  • Berry, D.F., Madsen, E.L., and Bollag, J.M., 1987, Conversion of indole to oxindole under methanogenic conditions, Appl. Environ. Microbiol, 53: 180.

    PubMed  CAS  Google Scholar 

  • Berry, D.F., Francis, A.J., and Bollag, J.M., 1987a, Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions, Microbiol. Rev. 51:43.

    PubMed  CAS  Google Scholar 

  • Boyd, S.A., and Shelton, D.R., 1984, Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge, Appl. Environ. Microbiol, 47:272.

    PubMed  CAS  Google Scholar 

  • Boyd, S.A., Shelton, D.R., Berry, D., and Tiedje, J.M., 1983, Anaerobic biodegradation of phenolic compounds in digested sludge, Appl. Environ. Microbiol., 46:50.

    PubMed  CAS  Google Scholar 

  • Brock, T.D., and O’Dea, K., 1977, Amorphous ferrous sulfide as a reducing agent for culture of anaerobes, Appl. Environ. Microbiol., 33:254.

    PubMed  CAS  Google Scholar 

  • Chmielowski, J., Grossman, A., and Labuzek, S., 1965, Biochemical degradation of some phenols during methane fermentation, Zesz. nauk. Politech. Slask. Inz. Sanit. 8:97.

    Google Scholar 

  • Ehrlich, G.E., Goerlitz, D.F., Bourell, J.H., Eisen, G.V., and Godsy, E.M., 1981, Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria, Appl. Environ. Microbiol., 42:878.

    PubMed  CAS  Google Scholar 

  • Evans, W.C., 1969, Microbial transformation of aromatic compounds, in: “Fermentation Advances,” D. Perlman, ed., Academic Press, New York.

    Google Scholar 

  • Godsy, E.M., and Goerlitz, D.F., 1986, Anaerobic microbial transformations of phenolic and other selected compounds in contaminated ground water at a creosote works, Pensacola, Florida, in: “Movement and Fate of Creosote Waste in Ground Water, Pensacola, Florida: U.S. Geological Survey Toxic Waste‐‐Ground-Water Contamination Program, U.S. Geological Survey Water-Supply Paper 2285,” H.C. Mattraw, Jr., and Franks, B.J., eds., Tallahassee.

    Google Scholar 

  • Godsy, E.M., Goerlitz, D.F., and Ehrlich, G.G., 1986, Effects of pentachlorophenol on methanogenic fermentation of phenol, Bull. Environ. Contam. Toxicol. 36:271.

    Article  PubMed  CAS  Google Scholar 

  • Godsy, E.M., and Grbic-Galic, D., 1988, Biodegradation parhways for benzothiophene in methanogenic microcosms, in: “U.S. Geological Survey Toxic Waste‐‐Ground-Water Contamination Program,” U.S. Geological Survey Open-File Report (in press).

    Google Scholar 

  • Goerlitz, D.F, 1984, A column technique for determining sorption of organic solutes on the lithologic structure of aquifers, Bull. Environ. Contam. Toxicol. 32:37.

    Article  PubMed  CAS  Google Scholar 

  • Goerlitz, D.F., Troutman, D.E., Godsy, E.M., and Franks, B.J., 1985, Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida, Environ. Sci. Technol., 19:955.

    Article  CAS  Google Scholar 

  • Grbic-Galic, D. and Young, L.Y., 1985, Methane fermentation of ferulate and benzoate: anaerobic degradation pathways, Appl. Environ. Microbiol., 50:292.

    PubMed  CAS  Google Scholar 

  • Hobbie, J.E., Daley, R.J., and Jasper, S., 1977, Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33:1225.

    PubMed  CAS  Google Scholar 

  • Kompala, D.S., Ramkrishna, D., Jansen, N.B., and Tsao, G.T., 1986, Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models, Biotechnol. Bioeng., 28:1044.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, A.W., and McCarty, P.L., 1970, Unified basis for biological treatment design and operation, J. Sanitary Engrg. Div. ASCE., 96:775.

    Google Scholar 

  • Maka, A., McKinley, V.L., Conrad, J.R., and Fannin, K.F., 1987, Degradation of benzothiophene and dibenzothiophene under anaerobic conditions by mixed cultures, Absts. Annu. Meet. Amer. Soc. Microbiol., 0 54:194.

    Google Scholar 

  • May, W.E., Wasik, S.P., and Freeman, D.H., 1978, Determination of the aqueous solubility of polynuclear aromatic hydrocarbons by a coupled column liquid chromatographic technique, Anal. Chem., 50:175.

    Article  CAS  Google Scholar 

  • Mihelcic, J.R., and Luthy, R.G., 1988, Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems, Appl. Environ. Microbiol., 54:1188.

    PubMed  CAS  Google Scholar 

  • Monod, J., 1949, The growth of bacterial cultures, Ann. Review Microbiol., 3:371.

    Article  CAS  Google Scholar 

  • Novotny, M., Strand, J.W., Smith, S.L., Wiesler, D., and Schwende, F.J., 1981, Compositional studies of coal tar by capillary gas chromatography-mass spectrometry, Fuel, 60:213.

    Article  CAS  Google Scholar 

  • Pereira, W.C., Rostad, C.E., Updegraff, D.M., and Bennett, J.L., 1987, Fate and movement of azaarenes and their anaerobic biotransformation products in an aquifer contaminated by wood-treatment chemicals. J. Environ. Tox. Chem., 6:163.

    Article  CAS  Google Scholar 

  • Ogata, A., and Banks, R.B., 1961, A solution of the differential equation of longitudinal dispersion in porous media. “U.S. Geological Survey Professional Paper 411-A”,Washington, D.C.

    Google Scholar 

  • Roberts, P.V., Schreiner, J., and Hopkins, G.D., 1982, Field study of organic water quality changes during groundwater recharge in the Palo Alto Baylands, Water Res., 16:1025.

    Article  CAS  Google Scholar 

  • Schalf, M.R., McNabb, J.F., Dunlap, W.J., Crosby, R.L., and Fryberger, J.S., 1981, “Manual of ground-water sampling procedures,” NWWA/EPA Series, National Water Well Association, Worthington, Ohio.

    Google Scholar 

  • Schwarzenbach, R.P., and Westall, J., 1981, Transport of nonpolar organic pollutants from surface water to groundwater: laboratory sorption studies, Environ. Sci. Technol., 15:1350.

    Article  Google Scholar 

  • Simkins, S., and Alexander, M., 1984, Models for mineralization kinetics with the variables of substrate concentration and population density, Appl. Environ. Microbial., 47:1299.

    CAS  Google Scholar 

  • Syewzyk, U., Syewzyk, R., and Schink, B., 1985, Methanogenic degradation of hydroquinone and catechol via reductive dehydroxylation to phenol. FEMS Microbiol. Ecol., 31:79.

    Article  Google Scholar 

  • Sudicky, E.A., Cherry, J.A., and Frind, E.O., 1983, Migration of contaminants in groundwater at a landfill: a case study, 4. A natural-gradient dispersion test, J. Hydrol., 63:81.

    Article  CAS  Google Scholar 

  • Tarvin, D., and Buswell, A.M., 1934, The methane fermentation of organic acids and carbohydrates, J. Amer. Chem. Soc., 56:1751.

    Article  CAS  Google Scholar 

  • ten Brummeler, E., Huslshoff Pol, L.H., Dolfing, J., Lettinga, G., and Zehnder, A.J.B., 1985, Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture, Appl. Environ. Microbiol., 49:1472.

    PubMed  CAS  Google Scholar 

  • Vogel, T.M., and Grbic-Galic, D., 1986, Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation, Appl. Environ. Microbiol., 52:200.

    PubMed  CAS  Google Scholar 

  • von Rumker, R., Lawless, E.W., and Meiners, A.F., 1975, Production, distribution, use and environmental impact potential of selected pesticides, U.S. Environmental Protection Agency, EPA 540/1–74–001.

    Google Scholar 

  • Wang, Y., Suidan, M.T., and Peffer, J.T., 1984, Anaerobic biodegradation of indole to methane, Appl. Environ. Microbiol., 48:1058.

    PubMed  CAS  Google Scholar 

  • Westall, J.C., Leuenberger, C., and Schwarzenbach, R.P., 1985, Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols, Environ. Sci. Technol., 19:193.

    Article  CAS  Google Scholar 

  • Williams, R.T., and Crawford, R.L., 1984, Methane production in Minnesota peatlands, Appl. Environ. Microbiol., 47:1266.

    PubMed  CAS  Google Scholar 

  • Young, L.Y., and Rivera, M.D., 1985, Methanogenic degradation of four phenolic compounds, Water Res., 19:1325.

    Article  CAS  Google Scholar 

  • Zachara, J.M., Ainsworth, C.C., Felice, L.J., and Reseh, C.T., 1986, Quinoline sorption to subsurface materials: role of pH and retention of the organic cation, Environ. Sci. Technol., 20:620.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Godsy, E.M., Goerlitz, D.F., Grbiċ-Galiċ, D. (1989). Transport and Degradation of Water-Soluble Creosote-Derived Compounds. In: Allen, D.T., Cohen, Y., Kaplan, I.R. (eds) Intermedia Pollutant Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0511-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0511-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7843-6

  • Online ISBN: 978-1-4613-0511-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics