Skip to main content

Gliding Motility and Flagellar Glycoprotein Dynamics in Chlamydomonas

  • Chapter
Ciliary and Flagellar Membranes

Abstract

Although there are many forms of motility and contractility within eukaryotic cells, most cases of whole cell locomotion can be conveniently divided into one of two classes: (1) movement of cells through a liquid medium due to the propagation of bends along cilia and flagella or (2) movement of cells while in adhesive contact with a solid or semisolid surface. In the first case (swimming of ciliated and flagellated cells), locomotion results from a viscous coupling between the ciliary or flagellar surface and the liquid medium. In the second case (exemplified by amoeboid and fibroblastic movements), cell-surface molecules with specific binding properties mediate the transfer of energy between the cell and the extracellular matrix or solid substrate (Buck and Horwitz, 1987; Burridge et al., 1988; Lackie, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, W.S., 1985, Characterization of Chlamydomonas sexual agglutinins, J. Cell Sci. Suppl. 2:233–260.

    PubMed  CAS  Google Scholar 

  • Adair, W.S., and Goodenough, U.W., 1978, Identification of a membrane tubulin in Chlamydomonas flagella, J. Cell Biol. 79:54a.

    Google Scholar 

  • Adair, W.S., Hwang, C., and Goodenough, U.W., 1983, Identification and visualization of the sexual agglutinin from the mating-type plus flagellar membrane of Chlamydomonas, Cell 33:183–193.

    PubMed  CAS  Google Scholar 

  • Anholt, R.R.H., 1987, Primary events in olfactory reception, Trends Biochem. Sci. 12:58–62.

    CAS  Google Scholar 

  • Barnett, A., and Steers, E., Jr., 1984, Antibody-induced membrane fusion in Paramecium, J. Cell Sci. 65:153–162.

    Google Scholar 

  • Bergman, K., Goodenough, U.W., Goodenough, D.A., Jawitz, J., and Martin, H., 1975, Gametic differentiation in Chlamydomonas reinhardtii. II. Flagellar membranes and the agglutination reaction, J. Cell Biol. 67:606–622.

    PubMed  CAS  Google Scholar 

  • Bessen, M., Fay, R.B., and Witman, G.B., 1980, Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas, J. Cell Biol. 86:446–455.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., 1977, Rapid motility occurring in association with the Chlamydomonas flagellar membrane, J. Cell Biol. 75:983–989.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., 1980, Direct visualization of dynamic membrane events in cilia, J. Exp. Zool. 213:293–295.

    Google Scholar 

  • Bloodgood, R.A., 1981, Flagella-dependent gliding motility in Chlamydomonas, Protoplasma 106:183–192.

    Google Scholar 

  • Bloodgood, R.A., 1982, Dynamic properties of the flagellar surface, Symp. Soc. Exp. Biol. 35:353–380.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., 1984, Protein turnover in the Chlamydomonas flagellum, Exp. Cell Res. 150:488–493.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., 1987, Glycoprotein dynamics in the Chlamydomonas flagellar membrane, Adv. Cell Biol. 1: 97–130.

    Google Scholar 

  • Bloodgood, R.A., 1988a, The use of microspheres in the study of cell motility, in: Microspheres: Medical and Biological Applications (A. Rembaum and Z.A. Tokes, eds.), CRC Press, Boca Raton, pp. 165–192.

    Google Scholar 

  • Bloodgood, R.A., 1988b, Gliding motility and the dynamics of flagellar membrane glycoproteins in Chlamydomonas reinhardtii, J. Protozool. 35:552–558.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., and Levin, E.N., 1983, Transient increase in calcium efflux accompanies fertilization in Chlamydomonas, J. Cell Biol. 97:397–404.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., and May, G.S., 1982, Functional modification of the Chlamydomonas flagellar surface, J. Cell Biol. 93:88–96.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., and Salomonsky, N.L., 1988, Transmembrane signaling in Chlamydomonas, J. Cell Biol. 107:776a.

    Google Scholar 

  • Bloodgood, R.A., and Salomonsky, N.L., 1989, Expression of gliding motility in Chlamydomonas requires that a concanavalin A binding glycoprotein be free to move within the plane of the flagellar membrane, Cell Motil. Cytoskeleton 13:1–8.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., and Workman, L.J., 1984, A flagellar surface glycoprotein mediating cell-substrate interaction in Chlamydomonas, Cell Motil. 4:77–87.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., Leffler, E.M., and Bojczuk, A.T., 1979, Reversible inhibition of Chlamydomonas flagellar surface motility, J. Cell Biol. 82:664–674.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., Woodward, M.P., and Salomonsky, N.L., 1986, Redistribution and shedding of flagellar membrane glycoproteins visualized using an anticarbohydrate monoclonal antibody and concanavalin A, J. Cell Biol. 102:1797–1812.

    PubMed  CAS  Google Scholar 

  • Bloodgood, R.A., Salomonsky, N.L., and Reinhart, F.D., 1987, Use of carbohydrate probes in conjunction with fluorescence activated cell sorting to select mutant cell lines of Chalmydomonas with defects in cell surface glycoproteins, Exp. Cell Res. 173:572–585.

    PubMed  CAS  Google Scholar 

  • Buck, C.A., and Horwitz, A.F., 1987, Cell surface receptors for extracellular matrix molecules, Annu. Rev. Cell Biol. 3:179–205.

    PubMed  CAS  Google Scholar 

  • Burchard, R.P., 1981, Gliding motility of prokaryotes: Ultrastructure, physiology, and genetics, Annu. Rev. Microbiol. 35:497–529.

    PubMed  CAS  Google Scholar 

  • Burridge, K., Fath, K., Kelley, T., Nuckolls, G., and Turner, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4:487–525.

    PubMed  CAS  Google Scholar 

  • Castenholz, R.W., 1982, Motility and taxes, Bot. Monogr. 19:413–439.

    Google Scholar 

  • Catt, J.W., Hills, G.J., and Roberts, K., 1976, A structural glycoprotein, containing hydroxyproline, isolated from the cell wall of Chlamydomonas reinhardtii, Planta 131:165–171.

    CAS  Google Scholar 

  • Cheng, K., and Katsoyannis, P.G., 1975, The inhibition of sugar transport and oxidation in fat cell ghosts by colchicine, Biochem. Biophys. Res. Commun. 64:1069–1075.

    PubMed  CAS  Google Scholar 

  • Claes, H., 1975, Influence of concanavalin A on autolysis of gametes from Chlamydomonas reinhardtii, Arch. Microbiol. 103:225–230.

    PubMed  CAS  Google Scholar 

  • Claes, H., 1977, Non-specific stimulation of the autolytic system in gametes from Chlamydomonas reinhardtii, Exp. Cell Res. 108:221–229.

    PubMed  CAS  Google Scholar 

  • Claes, H., 1980, Calcium ionophore-induced stimulation of secretory activity in Chlamydomonas reinhardtii, Arch. Microbiol. 124:81–86.

    CAS  Google Scholar 

  • Demets, R., Tomson, A.M., Homan, W.L., Stegwee, D., and van den Ende, H., 1988, Cell-cell adhesion in conjugating Chlamydomonas gametes: A self-enhancing process, Protoplasma 145:27–36.

    Google Scholar 

  • Dentler, W.L., 1981, Microtubule-membrane interactions in cilia and flagella, Int. Rev. Cytol. 72:1–47.

    PubMed  CAS  Google Scholar 

  • Dentler, W.L., 1987, Cilia and flagella, Int. Rev. Cytol. Suppl. 17:391–456.

    Google Scholar 

  • Detmers, P.A., and Condeelis, J.S., 1986, Trifluoperazine and W-7 inhibit mating in Chlamydomonas at an early stage of gametic interaction, Exp. Cell Res. 163:317–326.

    PubMed  CAS  Google Scholar 

  • Detmers, P.A., Carboni, J.M., and Condeelis, J., 1985, Localization of actin in Chlamydomonas using antiactin and NBD-phallacidin, Cell Motil. 5:415–430.

    PubMed  CAS  Google Scholar 

  • Dwyer, D.M., 1976, Antibody-induced modulation of Leishmania donovani surface membrane antigens, J. Immunol. 117:2081–2091.

    PubMed  CAS  Google Scholar 

  • Euteneuer, U., Koonce, M.P., Pfister, K.K., and Schliwa, M., 1988, An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa, Nature 332:176–178.

    CAS  Google Scholar 

  • Garbers, D.L., First, N.L., and Lardy, H.A., 1973, Properties of adenosine 3’,5’-monophosphate dependent protein kinases isolated from bovine epididymal spermatozoa, J. Biol. Chem. 248:875–879.

    PubMed  CAS  Google Scholar 

  • Gietzen, K., Wuthrich, A., and Bader, H., 1982, Effects of microtubular inhibitors on plasma membrane calmodulin dependent Ca2+-transport ATPase, Mol. Pharmacol. 22:413–420.

    PubMed  CAS  Google Scholar 

  • Gilbert, S.P., and Sloboda, R.D., 1986, Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules, J. Cell Biol. 103:947–956.

    PubMed  CAS  Google Scholar 

  • Gilbert, S.P., Allen, R.D., and Sloboda, R.D., 1985, Translocation of vesicles from squid axoplasm on flagellar microtubules, Nature 315:245–248.

    PubMed  CAS  Google Scholar 

  • Gilman, A.G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56:615–649.

    PubMed  CAS  Google Scholar 

  • Gitelman, S.E., and Witman, G.B., 1980, Purification of calmodulin from Chlamydomonas: Calmodulin occurs in cell bodies and flagella, J. Cell Biol. 98:764–770.

    Google Scholar 

  • Glaser, J., and Pate, J.L., 1973, Isolation and characterization of gliding motility mutants of Cytophaga columnaris, Arch. Mikrobiol. 93:295–309.

    PubMed  CAS  Google Scholar 

  • Goodenough, U.W., 1980, Ionophore stimulation of mating signals in Chlamydomonas, J. Cell Biol. 87:37a.

    Google Scholar 

  • Goodenough, U.W., and Jurivich, D., 1978, Tipping and mating-structure activation induced in Chlamydomonas by flagellar membrane antisera, J. Cell Biol. 79:680–693.

    PubMed  CAS  Google Scholar 

  • Grief, C., and Shaw, P.J., 1987, Assembly of cell-wall glycoproteins of Chlamydomonas reinhardtii: Oligosaccharides are added in medial and trans Golgi compartments, Planta 171:302–312.

    CAS  Google Scholar 

  • Gross, M.K., Toscano, D.G., and Toscano, W.A., Jr., 1987, Calmodulin-mediated adenylate cyclase from mammalian sperm, J. Biol. Chem. 262:8672–8676.

    PubMed  CAS  Google Scholar 

  • Gumbiner, B., and Louvard, D., 1985, Localized barriers in the plasma membrane: A common way to form domains, Trends Biochem. Sci. 10:435–438.

    Google Scholar 

  • Gustin, M.C., and Nelson, D.L., 1987, Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium, Biochem. J. 246:337–345.

    PubMed  CAS  Google Scholar 

  • Halfen, L.N., 1979, Gliding movements, Encycl. Plant Physiol 7:250–267.

    Google Scholar 

  • Hartfiel, G., and Amrhein, N., 1976, The action of methylxanthines on motility and growth of Chlamydomonas reinhardtii and other flagellated algae. Is cyclic AMP involved? Biochem. Physiol Pflanz. 169:531–556.

    CAS  Google Scholar 

  • Hasegawa, E., Hayashi, H., Asakura, S., and Kamiya, R., 1987, Stimulation of in vitro motility of Chlamydomonas axonemes by inhibition of cAMP-dependent phosphorylation, Cell Motil Cytoskeleton 8:302–311.

    PubMed  CAS  Google Scholar 

  • Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y., 1984, Isoquinolinesulfanamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase, Biochemistry 23:5036–5041.

    PubMed  CAS  Google Scholar 

  • Hodgkin, J., and Kaiser, D., 1977, Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus, Proc. Natl. Acad. Sci. USA 74:2938–2942.

    PubMed  CAS  Google Scholar 

  • Hoffman, J.L., and Goodenough, U.W., 1980, Experimental dissection of flagellar surface motility in Chlamydomonas, J. Cell Biol. 86:656–665.

    PubMed  CAS  Google Scholar 

  • Hollenberg, M.D., 1986, Mechanisms of receptor-mediated transmembrane signaling, Experientia 42:718–727.

    PubMed  CAS  Google Scholar 

  • Homan, W., Sigon, C., van den Briel, W., Wagter, R., de Nobel, H., Mesland, D., Musgrave, A., and van den Ende, H., 1987, Transport of membrane receptors and the mechanics of sexual cell fusion in Chlamydomonas eugametos, FEBS Lett. 215:323–326.

    Google Scholar 

  • Homan, W., Musgrave, A., de Nobel, H., Wagter, R., de Wit, D., Kolk, A., and van den Ende, H., 1988, Monoclonal antibodies directed against the sexual binding site of Chlamydomonas eugametos gametes, J. Cell Biol. 107:177–189.

    PubMed  CAS  Google Scholar 

  • Huang, B., Piperno, G., Ramanis, Z., and Luck, D.J.L., 1981, Radial spokes of Chlamydomonas flagella: Genetic analysis of assembly and function, J. Cell Biol. 88:80–88.

    PubMed  CAS  Google Scholar 

  • Hyams, J.S., and Borisy, G.G., 1978, Isolated flagellar apparatus of Chlamydomonas: Characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vivo, J. Cell Sci. 33:235–253.

    PubMed  CAS  Google Scholar 

  • Jarosch, R., 1962, Gliding, in: Physiology and Biochemistry of Algae (R. Lewin, ed.), Academic Press, New York, pp. 573–581.

    Google Scholar 

  • Kahn, C.R., Baird, K.L., Flier, J.S., Grunfield, C., Harmon, J.T., Harrison, L.C., Karlsson, F.A., Kasuga, M., King, G.L., Lang, U.C., Podskalny, J.M., and van Obberghen, E., Insulin receptors, receptor antibodies, and the mechanism of insulin action, 1981, Recent Prog. Horm. Res. 37:477–533.

    PubMed  CAS  Google Scholar 

  • Kaska, D.D., Piscopo, I.C., and Gibor, A., 1985, Intracellular calcium redistribution during mating in Chlamydomonas reinhardtii, Exp. Cell Res. 160:371–379.

    PubMed  CAS  Google Scholar 

  • King, C.A., 1981, Cell surface interaction of the protozoan Gregarina with concanavalin A beads—Implications of models of gregarine gliding, Cell Biol. Int. Rep. 5:297–305.

    PubMed  CAS  Google Scholar 

  • King, C.A., 1988, Cell motility of sporozoan protozoa, Parasitol. Today 4:315–319.

    PubMed  CAS  Google Scholar 

  • King, C.A., and Lee, K., 1982, Effect of trifluoperazine and calcium ions on gregarine gliding, Experientia 38: 1051–1052.

    CAS  Google Scholar 

  • Klumpp, S., and Schultz, J.E., 1982, Characterization of a Ca2+-dependent guanylate cyclase in the excitable ciliary membrane from Paramecium, Eur. J. Biochem. 124:317–324.

    PubMed  CAS  Google Scholar 

  • Kuznetsov, S.A., and Gelfand, V.I., 1986, Bovine brain kinesin is a microtubule-activated ATPase, Proc. Natl. Acad. Sci. USA 83:8530–8534.

    PubMed  CAS  Google Scholar 

  • Lackie, J.M., 1986, Cell Movement and Cell Behavior, Allen & Unwin, London.

    Google Scholar 

  • Lancet, D., and Pace U., 1987, The molecular basis of odor recognition, Trends Biochem. Sci. 12:63–66.

    CAS  Google Scholar 

  • Lapidus, I.R., and Berg, H.C., 1982, Gliding motility of Cytophaga sp, strain U67, J. Bacteriol. 151:384–398.

    PubMed  CAS  Google Scholar 

  • Lefebvre, P.A., and Rosenbaum, J.L., 1986, Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration, Annu. Rev. Cell Biol. 2:517–546.

    PubMed  CAS  Google Scholar 

  • Lefebvre, P.A., Nordstrom, S.A., Moulder, J.E., and Rosenbaum, J.L., 1978, Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis, J. Cell Biol. 78:8–27.

    PubMed  CAS  Google Scholar 

  • Lefebvre, P.A., Silflow, C.D., Wieben, E.D., and Rosenbaum, J.L., 1980, Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening of Chlamydomonas flagella, Cell 20: 469–477.

    PubMed  CAS  Google Scholar 

  • Lewin, R.A., 1952, Studies of the flagella of algae, I. General observations of Chlamydomonas moewusii Gerloff, Biol. Bull. (Woods Hole, Mass.) 103:74–79.

    Google Scholar 

  • Lewin, R.A., 1954, Mutants of Chlamydomonas moewusii with impaired motility, J. Gen. Microbiol. 11:358–368.

    PubMed  CAS  Google Scholar 

  • Lewin, R.A., 1982, A new kind of motility mutant (non-gliding) in Chlamydomonas, Experientia 38:348–349.

    Google Scholar 

  • Lis, H., and Sharon, N., 1986, Biological properties of lectins, in: The Lectins: Properties, Functions, and Applications in Biology and Medicine (I.E. Liener, N. Sharon, and I.J. Goldstein, eds.), Academic Press, New York, pp. 265–291.

    Google Scholar 

  • Lye, R.J., Porter, M.E., Scholey, J.M., and Mcintosh, J.R., 1987, Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans, Cell 51:309–318.

    PubMed  CAS  Google Scholar 

  • McLean, R.J., Laurendi, C.J., and Brown, R.M., 1974, The relationship of gamone to the mating reaction in Chlamydomonas moewusii, Proc. Natl. Acad. Sci. USA 71:2610–2613.

    PubMed  CAS  Google Scholar 

  • May, G.S., and Rosenbaum, J.L., 1983, Flagellar protein phosphorylation during flagellar regeneration and resorption in Chlamydomonas reinhardtii, J. Cell Biol. 97:195a.

    Google Scholar 

  • Mesland, D.A.M., 1976, Mating in Chlamydomonas eugametos, a scanning electron microscopical study, Arch. Mikrohiol. 109:31–35.

    CAS  Google Scholar 

  • Mesland, D.A.M., Hoffman, J.L., Caligor, E., and Goodenough, U.W., 1980, Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes, J. Cell Biol. 84:599–617.

    PubMed  CAS  Google Scholar 

  • Mizel, S.B., and Wilson, L., 1972, Nucleoside transport in mammalian cells. Inhibition of colchicine. Biochemistry 11:2573–2578.

    CAS  Google Scholar 

  • Monk, B.C., Adair, W.S., Cohen, R.A., and Goodenough, U.W., 1983, Topography of Chlamydomonas: Fine structure and polypeptide components of the gametic flagellar membrane surface and the cell wall, Planta 158:517–533.

    CAS  Google Scholar 

  • Musgrave, A., and ven den Ende, H., 1987, How Chlamydomonas court their partners, Trends Biochem. Sci. 12:470–473.

    Google Scholar 

  • Musgrave, A., de Wildt, P., Broekman, R., and van den Ende, H., 1983, The cell wall of Chlamydomonas eugametos. Immunological aspects, Planta 158:82–89.

    CAS  Google Scholar 

  • Musgrave, A., de Wildt, P., van Etten, I., Pijst, H., Scholma, C., Kooyman, R., Homan, W., and van den Ende, H., 1986, Evidence for a functional membrane barrier between the flagellum and cell body of Chlamydomonas eugametos gametes, Planta 167:544–553.

    CAS  Google Scholar 

  • Nakamura, T., and Gold, G.H., 1987, A cyclic nucleotide-gated conductance in olfactory receptor cilia, Nature 325:442–444.

    PubMed  CAS  Google Scholar 

  • Paschal, B.M., and Vallee, R.B., 1987, Retrograde transport by the microtubule-associated protein MAP 1C, Nature 330:181–183.

    PubMed  CAS  Google Scholar 

  • Paschal, B.M., Shpetner, H.S., and Vallee, R.B., 1987, MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties, J. Cell Biol. 105:1273–1282.

    PubMed  CAS  Google Scholar 

  • Pasquale, S.M., and Goodenough, U.W., 1987, Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii, J. Cell Biol. 105:2279–2292.

    PubMed  CAS  Google Scholar 

  • Pate, J.L., 1985, Gliding motility in Cytophaga, Microbiol. Sci. 2:289–295.

    PubMed  CAS  Google Scholar 

  • Pate, J.L., and Chang, L.-Y.E., 1979, Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes, Curr. Microbiol. 2:59–64.

    Google Scholar 

  • Peng, H.B., Cheng, P.-C., and Luther, P.W., 1981, Formation of ACh receptor clusters induced by positively charged latex beads, Nature 292:831–834.

    PubMed  CAS  Google Scholar 

  • Pijst, H.L.A., 1985, Sexual agglutination of the green alga Chlamydomonas eugametos: Symptoms and signals, Doctoral dissertation, University of Amsterdam, Chapter 6.

    Google Scholar 

  • Pijst, H.L.A., van Driel, R., Janssens, P.M.W., Musgrave, A., and van den Ende, H., 1984, Cyclic AMP is involved in sexual reproduction of Chlamydomonas eugametos, FEBS Lett. 174:132–136.

    CAS  Google Scholar 

  • Piperno, G., 1988, Isolation of a sixth dynein subunit adenosine triphosphatase of Chlamydomonas axonemes, Cell Biol. 106:133–140.

    CAS  Google Scholar 

  • Piperno, G., and Luck, D.J.L., 1979, An actin-like protein is a component of axonemes from Chlamydomonas flagella, J. Biol. Chem. 254:2187–2190.

    PubMed  CAS  Google Scholar 

  • Porter, M.E., Scholey, J.M., Stemple, D.L., Vigers, G.P.A., Vale, R.D., Sheetz, M.P., and Mcintosh, J.R., 1987, Characterization of the microtubule movement produced by sea urchin egg kinesin, J. Biol. Chem. 262:2794–2802.

    PubMed  CAS  Google Scholar 

  • Quader, H., Cherniack, J., and Filner, P., 1978, Participation of calcium in flagellar shortening and regeneration in Chlamydomonas reinhardtii, Exp. Cell Res. 113:295–301.

    PubMed  CAS  Google Scholar 

  • Reinhart, F.D., and Bloodgood, R.A., 1988a, Membrane-cytoskeleton interactions in the flagellum: A 240 kDa surface-exposed glycoprotein is tightly associated with the axoneme in Chlamydomonas moewusii, J. Cell Sci. 89:521–530.

    PubMed  CAS  Google Scholar 

  • Reinhart, F.D., and Bloodgood, R.A., 1988b, Gliding defective mutant cell lines of Chlamydomonas moewusii exhibit alterations in a 240 kDa surface-exposed flagellar glycoprotein, Protoplasma 144:110–118.

    CAS  Google Scholar 

  • Rembold, H., and Langenbach, T., 1978, Effect of colchicine on cell membrane and on biopterin transport in Crithidia fasciculata, J. Protozool. 25:404–408.

    PubMed  CAS  Google Scholar 

  • Remillard, S.P., and Witman, G.B., 1982, Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas, J. Cell Biol. 93:615–631.

    PubMed  CAS  Google Scholar 

  • Ringo, D.L., 1967, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol. 33:543–571.

    PubMed  CAS  Google Scholar 

  • Roberts, K., Grief, C., Hills, G.J., and Shaw, P.J., 1985a, Cell wall glycoproteins: Structure and function, J. Cell Sci. Suppl. 2:105–127.

    PubMed  CAS  Google Scholar 

  • Roberts, K., Phillips, J., Shaw, P., Grief, C., and Smith, E., 1985b, An immunological approach to the plant cell wall, in: Biochemistry of Plant Cell Walls (C.T. Brett and J.R. Hillman, eds.), Cambridge University Press, London, pp. 125–154.

    Google Scholar 

  • Rosenbaum, J.L., and Child, F.M., 1967, Flagellar regeneration in protozoan flagellates, J. Cell Biol. 54:507–539.

    Google Scholar 

  • Rosenbaum, J.L., Moulder, J.E., and Ringo, D.L., 1969, Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins, J. Cell Biol. 41:600–619.

    PubMed  CAS  Google Scholar 

  • Roufogalis, B.D., 1982, Specificity of trifluoperazine and related phenothiazines for calcium-binding proteins, in: Calcium and Cell Function, Volume 3 (W.Y. Cheung, ed.), Academic Press, New York, pp. 129–159.

    Google Scholar 

  • Rubin, R.W., and Filner, P., 1973, Adenosine 3’,5’-cyclic monophosphate in Chlamydomonas reinhardtii. Influence on flagellar function and regeneration. J. Cell Biol. 56:628–635.

    PubMed  CAS  Google Scholar 

  • Saito, T., Tsubo, Y., and Matsuda, Y., 1985, Synthesis and turnover of cell body-agglutinin as a pool of flagellar surface-agglutinin in Chlamydomonas reinhardtii gamete, Arch. Microbiol. 142:205–210.

    Google Scholar 

  • Sandoz, D., Gounon, P., Karsenti, E., and Sauron, M.-E., 1982, Immunochemical localization of tubulin, actin, and myosin in axonemes of ciliated cells from quail oviduct, Proc. Natl. Acad. Sci. USA 79:3198–3202.

    PubMed  CAS  Google Scholar 

  • Saxton, W.M., Porter, M.E., Cohn, S.A., Scholey, J.M., Raff, E.C., and Mcintosh, J.R., 1988, Drosophila kinesin: Characterization of microtubule motility and ATPase, Proc. Natl. Acad. Sci. USA 85: 1109–1113.

    PubMed  CAS  Google Scholar 

  • Schellenberg, R.R., and Gillespie, E., 1977, Colchicine inhibits phosphatidylinositol turnover induced in lymphocytes by concanavalin A, Nature 265:741–742.

    PubMed  CAS  Google Scholar 

  • Schreiber, A.B., Libermann, T.A., Lax, I., Yarden, Y., and Schlessinger, J., 1983, Biological role of epidermal growth factor-receptor clustering, J. Biol. Chem. 258:846–853.

    PubMed  CAS  Google Scholar 

  • Schreiner, G.F., and Unanue, E.R., 1976, Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction, Adv. Immunol. 24:37–165.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., and Jantzen, H.M., 1980, Cyclic nucleotide-dependent protein kinases from cilia of Paramecium tetraurelia, FEBS Lett. 116:75–78.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., Uhl, D.G., and Klumpp, S., 1987, Ionic regulation of adenylate cyclase from the cilia of Paramecium tetraaurelia, Biochem. J. 246:187–192.

    PubMed  CAS  Google Scholar 

  • Segal, R.A., and Luck, D.J., 1985, Phosphorylation in isolated Chlamydomonas axonemes: A phosphoprotein may mediate the Ca2+-dependent photophobic response, J. Cell Biol. 101:1702–1712.

    PubMed  CAS  Google Scholar 

  • Silflow, C.D., Lefebvre, P.A., McKeithan, T.W., Schloss, J.A., Keller, L.R. and Rosenbaum, J.L., 1981, Expression of flagellar protein genes during flagellar regeneration in Chlamydomonas, Cold Spring Harbor Symp. Quant. Biol. 46:157–169.

    CAS  Google Scholar 

  • Smith, E., Roberts, K., Hutchings, A., and Galfre, G., 1984, Monoclonal antibodies to the major structural glycoprotein of the Chlamydomonas cell wall, Planta 161:330–338.

    CAS  Google Scholar 

  • Snell, W.J., 1976, Mating in Chlamydomonas: A system for the study of specific cell adhesion. I. Ultrastructural and electrophoretic analysis of flagellar surface components involved in adhesion, J. Cell Biol. 68:48–69.

    PubMed  CAS  Google Scholar 

  • Snell, W.J., 1985, Cell-cell interactions in Chlamydomonas, Annu. Rev. Plant Physiol. 36:287–315.

    CAS  Google Scholar 

  • Snell, W.J., and Moore, W.S., 1980, Aggregation-dependent turnover of flagellar adhesion molecules in Chlamydomonas gametes, J. Cell Biol. 84:203–210.

    PubMed  CAS  Google Scholar 

  • Snell, W.J., Buchanan, M., and Clausell, A., 1982, Lidocaine reversibly inhibits fertilization in Chlamydomonas: A possible role in sexual signaling, J. Cell Biol. 94:607–612.

    PubMed  CAS  Google Scholar 

  • Stephens, R.E., and Stommel, E.W., 1989, Role of cyclic adenosine monophosphate in ciliary and flagellar motility, in: Cell Movement, Volume 1: The Dynein ATPases (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Alan R. Liss, New York, pp. 299–316.

    Google Scholar 

  • Stephens, R.E., Oleszki-Szuts, S., and Good, M.J., 1987, Evidence that tubulin forms an integral membrane skeleton in molluscan gill cilia, J. Cell Sci. 88:527–535.

    PubMed  Google Scholar 

  • Tamm, S.L., 1967, Flagellar development in the protozoan Peranema trichophorum, J. Exp. Zool. 164:163–186.

    Google Scholar 

  • Tash, J.S., and Means, A.R., 1983, Cyclic adenosine 3’,5’monophosphate, calcium, and protein phosphorylation in flagellar motility, Biol Reprod. 28:75–104.

    PubMed  CAS  Google Scholar 

  • Tash, J.S., Hidaka, H., and Means, A.R., 1986, Axokinin phosphorylation by cAMP-dependent protein kinase is sufficient for activation of sperm flagellar motility, J. Cell Biol 103:649–655.

    PubMed  CAS  Google Scholar 

  • Taylor, R.B., Duffus, W., Raff, M., and de Petris, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody, Nature New Biol 233: 225–229.

    PubMed  CAS  Google Scholar 

  • Trimmer, J.S., and Vacquier, V.D., 1988, Monoclonal antibodies induce the translocation, patching, and shedding of surface antigens of sea urchin spermatozoa, Exp. Cell Res. 175:37–51.

    PubMed  CAS  Google Scholar 

  • Vale, R.D., Reese, T.S., and Sheetz, M.P., 1985a, Identification of a novel force generating protein (kinesin) involved in microtubule-based motility, Cell 41:39–50.

    Google Scholar 

  • Vale, R.D., Schnapp, B.J. Mitchison, T., Steuer, E., Reese, T.S., and Sheetz, M.P., 1985b, Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro, Cell 43:623–632.

    PubMed  CAS  Google Scholar 

  • van den Ende, H., 1985, Sexual agglutination in Chlamydomonads, Adv. Microb. Physiol 26:89–123.

    PubMed  Google Scholar 

  • Watanabe, K., and West, W.L., 1982, Calmodulin, activated cyclic nucleotide phosphodiesterase, microtubules, and vinca alkaloids, Fed. Proc. 41:2292–2299.

    PubMed  CAS  Google Scholar 

  • Wantanabe, T., and Flavin, M., 1976, Nucleotide-metabolizing enzymes in Chlamydomonas flagella, J. Biol Chem. 251:182–192.

    Google Scholar 

  • Wiese, L., 1965, On sexual agglutination and mating type substances (gamones) in isogamous heterothallic Chlamydomonads. I. Evidence of the identity of the gamones with the surface components responsible for sexual flagellar contact, J. Phycol. 1:46–54.

    Google Scholar 

  • Witman, G.B., 1975, The site of in vivo assembly of flagellar microtubules, Ann. N.Y. Acad. Sci. 253:178–191.

    PubMed  CAS  Google Scholar 

  • Witman, G.B., 1986, Isolation of Chlamydomonas flagella and flagellar axonemes, Methods Enzymol 134: 280–290.

    PubMed  CAS  Google Scholar 

  • Witman, G.B., 1989, Perspective: Composition and molecular organization of the dyneins, in: Cell Movement, Volume 1: The Dynein ATPases (F.D. Warner, P. Satir, and I.R. Gibbons, eds.), Alan R. Liss, Inc., New York, pp. 25–35.

    Google Scholar 

  • Witman, G.B., Carlson, K., Berliner, J., and Rosenbaum, J.L., 1972, Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes and mastigonemes, J. Cell Biol 54: 507–539.

    PubMed  CAS  Google Scholar 

  • Wolf, D.E., 1987, Overcoming random diffusion in polarized cells—Corralling the drunken begger, BioEssays 6:116–121.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloodgood, R.A. (1990). Gliding Motility and Flagellar Glycoprotein Dynamics in Chlamydomonas . In: Bloodgood, R.A. (eds) Ciliary and Flagellar Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0515-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0515-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7845-0

  • Online ISBN: 978-1-4613-0515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics