Skip to main content

β-Adrenoceptors Cyclic AMP, and Cyclic GMP in Control of Uterine Motility

  • Chapter
Uterine Function

Abstract

Adenosine 3′,5′-cyclic monophosphate (cAMP) and the enzymes necessary for its synthesis and degradation have been shown to be present in most mammalian cells, including myometrial cells. Cyclic AMP is considered to be the “second messenger” responsible for mediating the actions of numerous drugs and hormones, and such a role has been suggested for this cyclic nucleotide in the uterine relaxant effects of β-adrenoceptor agonists such as isoproterenol and epinephrine. Some of the evidence for and against a role for cAMP as a mediator of the uterine relaxant effects of β agonists is discussed in the following sections. By way of background, brief descriptions of the roles of adrenergic receptors in control of uterine motility and the effects of estrogen and progesterone on these responses are included. The factors involved in coupling adrenergic receptors to the cAMP system are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist, R. P., 1948, A study of the adrenotropic receptors, Am. J. Physiol 153:583–600.

    Google Scholar 

  2. Ahlquist, R. P., 1962, The adrenotropic receptor—detector, Arch. Int. Pharmacodyn 139:38–41.

    PubMed  CAS  Google Scholar 

  3. Miller, M. D., and Marshall, J. M., 1965, Uterine response to nerve stimulation: Relation to hormonal status and catecholamines, Am. J. Physiol 209:859–863.

    PubMed  CAS  Google Scholar 

  4. Davidson, W. J., and Ikoku, C., 1966, The adrenergic receptors in the guinea pig uterus.Can J. Physiol. Pharmacol 44:491–493.

    Article  PubMed  CAS  Google Scholar 

  5. Tsai, T. H., and Fleming, W. W., 1964, The adrenotropic receptors of the cat uterus, J. Pharmacol Exp. Ther 143:268–272.

    PubMed  CAS  Google Scholar 

  6. Diamond, J., and Brody, T. M., 1966, Effect of catecholamines on smooth muscle motility and phosphorylase activity, J. Pharmacol. Exp. Ther 152:202–211.

    PubMed  CAS  Google Scholar 

  7. Wansbrough, H., Nakanishi, H., and Wood, C., 1967, Effect of epinephrine on human uterine activity in vitroand in vivo, Obstet. Gynecol 30:779–789.

    CAS  Google Scholar 

  8. Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P., and Brown, T. G., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214:597–598.

    Article  PubMed  CAS  Google Scholar 

  9. Langer, S. Z., 1974, Presynaptic regulation of catecholamine release, Biochem. Pharmacol 23:1793–1800.

    Article  PubMed  CAS  Google Scholar 

  10. Bottari, S. P., Vokaer, A., Kaivez, E., Lescrainier, J. P., and Vauquelin, G., 1985, Regulation of alpha- and beta-adrenergic receptor subclasses by gonadal steroids in human myometrium, Acta Physiol. Hung 65:335–346.

    PubMed  CAS  Google Scholar 

  11. O’Donnell, S. R., Persson, C. G. A., and Wanstall, J. C., 1978, An in vitro comparison of β- adrenoceptor stimulants on potassium-depolarized uterine preparations from guinea pigs, Br. J. Pharmacol 62:227–233.

    PubMed  Google Scholar 

  12. Johansson, S. R. M., Andersson, R. G. G., and Wikberg, J. E. S., 1980, Comparison of β1 - and β2-receptor stimulation in oestrogen or progesterone dominated rat uterus, Acta Pharmacol. Toxicol 47:252–258.

    CAS  Google Scholar 

  13. Lefkowitz, R. J., Stadel, J. M., and Caron, M. G., 1983, Adenylate cyclase-coupled beta-adrenergic receptors: Structure and mechanisms of activation and desensitization, Annu. Rev. Biochem 52:159–186.

    Article  PubMed  CAS  Google Scholar 

  14. Hoffman, B. B., Lavin, T. N., Lefkowitz, R. J., and Ruffolo, R. R., 1981, Alpha adrenergic receptor subtypes in rabbit uterus: Mediation of myometrial contraction and regulation by estrogens, J. Pharmacol. Exp. Ther 219:290–295.

    PubMed  CAS  Google Scholar 

  15. Ariens, E. J., and Simonis, A. M., 1983, Physiological and pharmacological aspects of adrenergic receptor classification, Biochem. Pharmacol 32:1539–1545.

    Article  PubMed  CAS  Google Scholar 

  16. Bulbring, E., and Tomita, T., 1987, Catecholamine action on smooth muscle, Pharmacol. Rev 39:49–96.

    PubMed  CAS  Google Scholar 

  17. Marshall, J. M., 1970, Adrenergic innervation of the female reproductive tract: Anatomy, physiology and pharmacology, Ergeb. Physiol 62:6–67.

    Article  Google Scholar 

  18. Graham, J. P. D., and Gurd, M. R., 1960, Effects of adrenaline on the isolated uterus of the cat, J. Physiol. (Lond.) 152:243–249.

    CAS  Google Scholar 

  19. Diamond, J., and Brody, T. M., 1966, Hormonal alteration of the response of the rat uterus to catecholamines, Life Sci 5:2187–2193.

    Article  CAS  Google Scholar 

  20. Chow, E. H. M., and Marshall, J. M., 1981, Effects of catecholamines on circular and longitudinal muscle of the rat, Eur. J. Pharmacol 76:157–165.

    Article  PubMed  CAS  Google Scholar 

  21. Kishikawa, T., 1981, Alterations in the properties of the rat myometrium during gestation and post partum, Jpn. J. Physiol 31:515–536.

    Article  PubMed  CAS  Google Scholar 

  22. Roberts, J. M., Insel, P. A., and Goldfien, A., 1981, Regulation of myometrial adrenoceptors and adrenergic response by sex steroids, Mol. Pharmacol 20:52–58.

    PubMed  CAS  Google Scholar 

  23. Roberts, J. M., Insel, P. A., Goldfien, R. D., and Goldfien, A., 1977, a-Adrenoceptors but not β- adrenoceptors increase in rabbit uterus with estrogen, Nature 270:624–625

    Article  PubMed  CAS  Google Scholar 

  24. Williams, L. T., and Lefkowitz, R. J., 1977, Regulation of rabbit myometrial alpha-adrenergic receptors by estrogen and progesterone, J. Clin. Invest 60:815–818.

    Article  PubMed  CAS  Google Scholar 

  25. Rodbell, M., 1980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284:17–22.

    Article  PubMed  CAS  Google Scholar 

  26. Codina, J., Hildebrandt, J., Sunyer, T., Sekura, R. D., Manclark, C. R.. Iyengar, R., and Birnbaumer, L., 1984, Mechanisms in the vectorial receptor—adenylate cyclase signal transduction, Adv. Cyclic Nucleotide Protein PhosphoryI. Res 17:111–125.

    CAS  Google Scholar 

  27. Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  28. Levitzki, A., 1988, From epinephrine to cyclic AMP, Science 241:800–806.

    Article  PubMed  CAS  Google Scholar 

  29. Krall, J. F., Leshon, S. C., Frolich, M., Jamgotchian, N., and Korenman, S. G., 1982, Adenylate cyclase activation. Characterization of guanyl nucleotide requirements by direct radioligand-binding methods, J. Biol. Chem 257:10582–10586.

    PubMed  CAS  Google Scholar 

  30. Tanfin, Z., and Harbon, S., 1987, Heterologous regulations of cAMP responses in pregnant rat myometrium. Evolution from a stimulatory to an inhibitory prostaglandin E2 and prostacyclin effect, Mol. Pharmacol 32:249–257.

    PubMed  CAS  Google Scholar 

  31. Dobbs, J. W., and Robison, G. A., 1968, Functional biochemistry of β-receptors in the uterus, Fed. Proc 27:352.

    Google Scholar 

  32. Triner, L., Vulliemoz, Y., Verosky, M., and Nahas, G. G., 1970, The effect of catecholamines on adenyl cyclase activity in rat uterus, Life Sci 9:707–712.

    Article  CAS  Google Scholar 

  33. Triner, L., Nahas, G. G., Vulliemoz, Y., Overweg, N. I. A., Verosky, M., Habif, D. V., and Ngai, S. H., 1971, Cyclic AMP and smooth muscle function, Ann. N.Y. Acad. Sci 185:458–476.

    Article  PubMed  CAS  Google Scholar 

  34. Marshall, J. M., and Kroeger, E. A., 1973, Adrenergic influences on uterine smooth muscle, Phil. Trans. R. Soc. Lond. [Biol.] 265:135–148.

    Article  CAS  Google Scholar 

  35. Mitznegg, P., Heim, F., and Meythaler, B., 1970, Influence of endogenous and exogenous cyclic 3′,5′-AMP on contractile responses induced by oxytocin and calcium in isolated rat uterus, Life Sci 9:121–128.

    Article  PubMed  CAS  Google Scholar 

  36. Mitznegg, P., Hach, B., and Heim, F., 1971, The influence of cyclic 3′,5′-AMP on contractile responses induced by vasopressin in isolated rat uterus, Life Sci 10:169–174.

    Article  CAS  Google Scholar 

  37. Polacek, I., and Daniel, E. E., 1971, Effect of α- and β-adrenergic stimulation on the uterine motility and adenosine 3′,5′-monophosphate level, Can. J. Physiol. Pharmacol 49:988–998.

    Article  PubMed  CAS  Google Scholar 

  38. Hardman, J. G., 1981, Cyclic nucleotides and smooth muscle contraction: Some conceptual and experimental considerations, in: Smooth Muscle: An Assessment of Current Knowledge( E. Bul-bring, A. F. Brading, A. W. Jones, and T. Tomita, eds.), Edward Arnold, London, pp. 249–262.

    Google Scholar 

  39. Hardman, J. G., 1984, Cyclic nucleotides and regulation of vascular smooth muscle, J. Cardiovasc. Pharmacol 6:S639–S645.

    Article  PubMed  Google Scholar 

  40. Krall, J. F., Swensen, J. L., and Korenman, S. G., 1976, Hormonal control of uterine contraction. Characterization of cyclic AMP-dependent membrane properties in the myometrium, Biochim. Biophys. Acta 448:578–588.

    Article  PubMed  CAS  Google Scholar 

  41. Nishikori, K., and Maeno, H., 1979, Close relationship between adenosine 3′: 5′-monophosphate- dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes, J. Biol. Chem 254:6099–6106.

    PubMed  CAS  Google Scholar 

  42. Scheid, C. R., Honeyman, T. W., and Fay, F. S., 1979, Mechanism of β-adrenergic relaxation of smooth muscle, Nature 277:32–36.

    Article  PubMed  CAS  Google Scholar 

  43. Adelstein, R. S., and Hathaway, D. R., 1979, Role of calcium and cyclic adenosine 3′:5′ monophosphate in regulating smooth muscle contraction, Am. J. Cardiol 44:783–787.

    Article  PubMed  CAS  Google Scholar 

  44. Diamond, J., 1978, Role of cyclic nucleotides in control of smooth muscle contraction, Adv. Cyclic Nucl. Res 9:327–340.

    CAS  Google Scholar 

  45. Polacek, I., Bolan, J., and Daniel, E. E., 1971, Accumulation of adenosine 3′,5′-monophosphate and relaxation in the rat uterus in vitro, Can. J. Pharmacol 49:999–1004.

    Article  CAS  Google Scholar 

  46. Diamond, J., and Holmes, T. G., 1975, Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium, Can. J. Physiol. Pharmacol 53:1099– 1107.

    Article  PubMed  CAS  Google Scholar 

  47. Verma, S. C., and McNeill, J. H., 1976, Isoproterenol-induced relaxation, phosphorylase activation and cyclic adenosine monophosphate levels in the polarized and depolarized rat uterus, J. Pharmacol. Exp. Ther 198:539–547.

    PubMed  CAS  Google Scholar 

  48. Izumi, H., and Kishikawa, T., 1982, Effects of ritodrine, a β2-adrenoceptor agonist, on smooth muscle cells of the myometrium of pregnant rats, Br. J. Pharmacol 76:463–471.

    PubMed  CAS  Google Scholar 

  49. Smith, D. D., and Marshall, J. M., 1986, Forskolin effects on longitudinal myometrial strips from the pregnant rat: Relationship with membrane potential and cyclic AMP, Eur. J. Pharmacol 122:29–35.

    Article  PubMed  CAS  Google Scholar 

  50. Diamond, J., and Marshall, J. M., 1969, Smooth muscle relaxants: Dissociation between resting membrane potential and resting tension in rat myometrium, J. Pharmacol. Exp. Ther 168:13–20.

    PubMed  CAS  Google Scholar 

  51. Nesheim, B.-I., Osnes, J.-B., and Oye, I., 1975, Role of cyclic adenosine 3′,5′-monophosphate in the isoprenaline-induced relaxation of the oestrogen dominated rabbit uterus, Br. J. Pharmacol 53:403–407.

    PubMed  CAS  Google Scholar 

  52. Nesheim, B.-I., and Sigurdson, S. G., 1978, Effects of isoprenaline and dibutyryl-cAMP on the electrical and mechanical activity of the rabbit myometrium, Acta Pharmacol. Toxicol 42:371– 376.

    Article  CAS  Google Scholar 

  53. Marshall, J. M., and Fain, J. N., 1985, Effects of forskolin and isoproterenol on cyclic AMP and tension in the myometrium, Eur. J. Pharmacol 107:25–34.

    Article  Google Scholar 

  54. Harbon, S., and Clauser, H., 1971, Cyclic adenosine 3′,5′ monophosphate levels in rat myo-metrium under the influence of epinephrine, prostaglandins and oxytocin. Correlations with uterus motility, Biochem. Biophys. Res. Commun 44:1496–1503.

    Article  PubMed  CAS  Google Scholar 

  55. Vesin, M.-F., and Harbon, S., 1974, The effects of epinephrine, prostaglandins, and their antagonists on adenosine cyclic 3′,5′ monophosphate concentrations and motility of the rat uterus, Mol. Pharmacol 10:457–473.

    PubMed  CAS  Google Scholar 

  56. Harbon, S., DoKhac, L., and Vesin, M.-F., 1976, Cyclic AMP binding to intracellular receptor proteins in rat myometrium. Effect of epinephrine and prostaglandin E1, Mol. Cell. Endocrinol 6:17–34.

    Article  PubMed  CAS  Google Scholar 

  57. Harbon, S., Vesin, M.-F., DoKhac, L., and Leiber, D., 1978, Cyclic nucleotides in the regulation of rat uterus contractility, in: Molecular Biology and Pharmacology of Cyclic Nucleotides( G. Folco and R. Paoletti, eds.), Elsevier North-Holland, Amsterdam, pp. 279–296.

    Google Scholar 

  58. DoKhac, L., Mokhtari, A., and Harbon, S., 1986, A re-evaluated role for cyclic AMP in uterine relaxation. Differential effect of isoproterenol and forskolin, J. Pharmacol. Exp. Ther 239:236– 242.

    CAS  Google Scholar 

  59. Ohia, S. E., and Boyle, F. C., 1988, Role of cyclic AMP in rat uterine inhibitory response to salbutamol during the natural oestrous cycle, Arch. Int. Pharmacodyn 293:245–256.

    PubMed  CAS  Google Scholar 

  60. Goldberg, N. D., Haddox, M. K., Dunham, E., Lopez, C., and Hadden, J. W., 1974, The Yin Yang hypothesis of biological control: Opposing influences of cyclic GMP and cyclic AMP in the regulation of cell proliferation and other biological processes, in: The Cold Spring Harbor Symposium on the Regulation of Proliferation in Animal Cells( B. Clarkson and R. Baserga. eds.), Cold Spring Harbor Laboratory, New York, pp. 609–625.

    Google Scholar 

  61. Lee, T. P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3′: 5′-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle, Proc. Natl. Acad. Sci. U.S.A 69:3287–3291.

    Article  PubMed  CAS  Google Scholar 

  62. Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W., and Sutherland, E W., 1973, A new enzymatic assay for guanosine 3′: 5′-cyclic monophosphate and its application to the ductus deferens of the rat, Proc. Natl. Acad. Sci. U.S.A 70:1721–1725.

    Article  PubMed  CAS  Google Scholar 

  63. Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W., and Sutherland. E. W., 1973, The importance of calcium ions for the regulation of guanosine 3′:5′-cyclic monophosphate levels, Proc. Natl. Acad. Sci. U.S.A 70:3889–3893

    Article  PubMed  CAS  Google Scholar 

  64. Clyman, R. I., Sandler, J. A., Manganiello, V. C., and Vaughan, M., 1975, Guanosine 3′,5′- monophosphate and adenosine 3′,5′-monophosphate content of human umbilical artery. Possible role in perinatal arterial patency and closure, J. Clin. Invest 55:1020–1025.

    Article  PubMed  CAS  Google Scholar 

  65. Dunham, E. W., Haddox, M. K., and Goldberg, N. D., 1974, Alteration of vein cyclic 3′: 5′ nucleotide concentrations during changes in contractility, Proc. Natl. Acad. Sci. U.S.A 71:815– 819.

    Article  PubMed  CAS  Google Scholar 

  66. Kadowitz, P. J., Joiner, P. D., Hyman, A. L., and George, W. J., 1975, Influence of prostaglandins E1 and F2α on pulmonary vascular resistance, isolated lobar vessels and cyclic nucleotide levels, J. Pharmacol. Exp. Ther 192:677–687.

    PubMed  CAS  Google Scholar 

  67. Murad, F., and Kimura, H., 1974, Cyclic nucleotide levels in incubations of guinea pig trachea, Biochim. Biophys. Acta 343:275–286.

    PubMed  CAS  Google Scholar 

  68. Diamond, J., and Hartle, D. K., 1976, Cyclic nucleotide levels during carbachol-induced smooth muscle contractions, J. Cyclic Nucleotide Res 2:179–188.

    CAS  Google Scholar 

  69. Angles d’Auriac, G., and Worcel, M., 1976, Cellular levels of cAMP and cGMP in rat uterine smooth muscle. Effects of angiotensin, carbachol and various metabolic conditions, in: Smooth Muscle Pharmacology and Physiology (M. Worcel and G. Vassort, eds.), INSERM, Paris, pp. 101– 111

    Google Scholar 

  70. Leiber, D., and Harbon, S., 1982, The relationship between the carbachol stimulatory effect on cyclic GMP content and activation by fatty acid hydroperoxides of a soluble guanylate cyclase in the guinea pig myometrium, Mol. Pharmacol 12:654–663.

    Google Scholar 

  71. Diamond, J., and Blisard, K. S., 1976, Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery, Mol. Pharmacol 12:688–692.

    CAS  Google Scholar 

  72. Diamond, J., and Holmes, T. G., 1975, Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium, Can. J. Physiol. Pharmacol 53:1099– 1107.

    Article  PubMed  CAS  Google Scholar 

  73. Schultz, K. D., Schultz, K., and Schultz, G., 1977, Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens, Nature 265:750–751.

    Article  PubMed  CAS  Google Scholar 

  74. Katsuki, S., Arnold, W. P., and Murad, F., 1977, Effects of sodium nitroprusside, nitroglycerin and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues, J. Cyclic Nucleotide Res 3:239–247.

    PubMed  CAS  Google Scholar 

  75. Ignarro, L. J., and Kadowitz, P. J., 1985, The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation, Annu. Rev. Pharmacol 25:171–191.

    Article  CAS  Google Scholar 

  76. Waldman, S. A., and Murad, F., 1987, Cyclic GMP synthesis and function, Pharmacol. Rev 39:163–196.

    PubMed  CAS  Google Scholar 

  77. Leiber, D., Vesin, M.-F., and Harbon, S., 1978, Regulation of guanosine 3′,5′-cyclic monophosphate levels and contractility in rat myometrium, FEBS Lett 86:183–187.

    Article  PubMed  CAS  Google Scholar 

  78. Diamond, J., 1983, Lack of correlation between cyclic GMP elevation and relaxation of nonvascular smooth muscle by nitroglycerin, nitroprusside, hydroxylamine and sodium azide, J. Pharmacol. Exp. Ther 225:422–426.

    PubMed  CAS  Google Scholar 

  79. Diamond, J., and Hartle, D. K., 1974, Cyclic nucleotide levels during spontaneous uterine contractions, Can. J. Physiol. Pharmacol 52:763–767.

    Article  PubMed  CAS  Google Scholar 

  80. Schultz, K. D., Bohme, E., Kreye, V. A. W., and Schultz, G., 1979, Relaxation of hormonally stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP, Naunyn Schmiedebergs Arch. Pharmacol 306:1–9.

    Article  PubMed  CAS  Google Scholar 

  81. Bulbring, E., and Hardman, J. G., 1976, Effects on smooth muscles of nucleotides and the dibutyryl analogues of cyclic nucleotides, in: Smooth Muscle Pharmacology and Physiology( M. Worcel and G. Vassort, eds.), INSERM, Paris, pp. 125–131.

    Google Scholar 

  82. McCormick, M. C., 1985, The contribution of low birth weight to infant mortality and morbidity, N. Engl. J. Med 312:82–90.

    Article  PubMed  CAS  Google Scholar 

  83. Lumley, J., 1988, The prevention of preterm birth: Unresolved problems and work in progress, Aust. Paediatr. J 24:101–111.

    PubMed  CAS  Google Scholar 

  84. King, J. F., Keirse, M. J. N. C., Grant, A., and Chalmers, I., 1985, Tocolysis—the case for and against, in: Preterm Labour and Its Consequences( R. W. Beard and F. Sharp, eds.), Royal College of Obstetricians and Gynaecologists, London, pp. 199–208.

    Google Scholar 

  85. Eggleston, M. K., 1986, Management of preterm labor and delivery, Clin. Obstet. Gynecol 29:230–239.

    Article  PubMed  CAS  Google Scholar 

  86. King, J. F., Grant, A., Kierse, M. J. N. C., and Chalmers, I., 1988, Beta-mimetics in preterm labor: An overview of the randomized controlled trials, Br. J. Obstet. Gynaecol 95:211–222.

    Article  PubMed  CAS  Google Scholar 

  87. Gonik, B., and Creasy, R. K., 1986, Preterm labor: Its diagnosis and management, Am. J. Obstet. Gynecol 154:3–8.

    PubMed  CAS  Google Scholar 

  88. Garite, T. J., Keegan, K. A., Freeman, R. K., and Nageotte, M. P., 1987, A randomized trial of ritodrine tocolysis versus expectant management in patients with premature rupture of membranes at 25 to 30 weeks of gestation, Am. J. Obstet. Gynecol 157:388–393.

    PubMed  CAS  Google Scholar 

  89. Hollander, D. I., Nagey, D. A., and Pupkin, M. J., 1987, Magnesium sulfate and ritodrine hydrochloride: A randomized comparison, Am. J. Obstet. Gynecol 156:631–637.

    PubMed  CAS  Google Scholar 

  90. Benedetti, T. J., 1983, Maternal complications of parenteral β-sympathomimetic therapy for premature labor, Am. J. Obstet. Gynecol 145:1–6.

    PubMed  CAS  Google Scholar 

  91. Caritis, S. N., Chiao, J. P., Moore, J. J., and Ward, S. M., 1987, Myometrial desensitization after ritodrine infusion, Am. J. Physiol 253:E410–E417.

    PubMed  CAS  Google Scholar 

  92. Casper, R. F., and Lye, S. J., 1986, Myometrial desensitization to continuous but not to intermittent β-adrenergic agonist infusion in the sheep, Am. J. Obstet. Gynecol 154:301–305.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Diamond, J. (1990). β-Adrenoceptors Cyclic AMP, and Cyclic GMP in Control of Uterine Motility. In: Carsten, M.E., Miller, J.D. (eds) Uterine Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0575-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0575-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7873-3

  • Online ISBN: 978-1-4613-0575-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics