Skip to main content

On Thermocapillary Flows in Containers with Differentially Heated Side Walls

  • Chapter
Physicochemical Hydrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 174))

Abstract

The problem to be investigated in this paper is that of a liquid layer in a rectangular container heated from one side and cooled from the other side. The lower wall of the container is insulated. The upper surface of the liquid is open to the ambiancy (Fig. 1). In this container, flow is driven by density differences in the gravitational field and by surface tension gradients. In a microgravity environment, surface tension gradients are the only cause of motion. Indeed, since surface tension σ is temperature dependent, it is clear that a steady surface tension gradient exists along the upper free surface. Usually surface tension decreases with temperature (∂σ/∂T ≈ - 0.15 mN.m-1.K-1 for water), but we do not like to restrict ourself to this usual case. Rather, we will concentrate on the less known case of systems for which surface tension increases with temperature (∂σ/∂T > 0). Indeed if one looks at the surface tension of e.g. the system MnO-SiO2 in the temperature range 1300–1600 °C, one observes that surface tension may decrease or increase with T depending on the composition of this particular silicate1, When the content in SiO2 exceeds 30 %, then ∂σ/∂T > 0. It seems to be a general rule that, in binary SiO2 systems, the temperature coefficient of surface tension increases with the percentage of SiO2, becoming thus positive at a given percent of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.B. King, The surface tension and structure of silicate slags, J. Soc. Glass Technol. 35, 241 (1951)

    Google Scholar 

  2. J.F. Elliott, M. Gleiser and V. Ramakrishna, “Thermochemestry for Steelmaking”, (Vol. 2, Thermodynamic and Transport Properties) Addison-Wesly Pub. Co. (1960)

    Google Scholar 

  3. P.J. Desre and J.C. Joud, Surface tension temperature coefficient of liquid alloys and definition of a “zero-Marangoni number alloy” for cristallisation experiment in microgravity environment, Acta Astronautica, 8, 407 (1981)

    Article  Google Scholar 

  4. K. Motomura, S.I. Iwagana, Y. Hayami, S. Urgu and R. Matuura, Thermody namics studies on adsorption at interfaces - IV. Dodecylammonium chloride at water-air interface, J. Colloid Interface Sci., 80, 32 (1981)

    Article  Google Scholar 

  5. R. Vochten, PhD Thesis, Thermodynamisch studie van de reversiebele molaire adsorptie-warmte aan grensvlakken voor niet ionogene tensiden, University of Ghent, Belgium (1976)

    Google Scholar 

  6. R. Vochten and G. Petré, Study of the heat of irreversible adsorption at the air-solution interface, J. Colloid Sci., 42, 320 (1973)

    Article  Google Scholar 

  7. A.K. Sen and S.H. Davis, Steady thermocapillary flows in two-dimensional slots, J. Fluid Mech., 121, 163 (1982)

    Article  ADS  MATH  Google Scholar 

  8. M.K. Smith and S.H. Davis, The instability of sheared liquid layers, J. Fluid Mech., 121, 187 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M.K. Smith and S.H. Davis, Instabilities of dynamic thermocapillary liquid layers, J. Fluid Mech. 132, 119 (1983) and 132, 145 (1983)

    Article  ADS  MATH  Google Scholar 

  10. G.M. Homsy and E. Meiburg, The effect of surface contamination on ther mocapillary flow in a two-dimensional slot, J. Fluid Mech., 139, 443 (1984)

    Article  ADS  MATH  Google Scholar 

  11. M. Strani, R. Piva and G. Graziani, Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation, J. Fluid Mech., 130, 347 (1983)

    Article  ADS  MATH  Google Scholar 

  12. L.G. Napolitano and C. Golia, Influence of surface tension minimum on surface and buoyancy driven flows in Stokes regime, in “Proceedings of the European Sympodium on Material Science under Microgravity”, ESA SP-191, 229 (1983)

    Google Scholar 

  13. L.G. Napolitano, C. Golia and A. Viviani, Numerical simulation of unsteady thermal Marangoni flows, in “Proceedings of the 5th European Symposium on Material Science under Mierogravity”, ESA SP-222, 251 (1984)

    Google Scholar 

  14. A.G. Kirdyashkin, Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient, Int. J. Heat Mass Transfer, 27(8), 1205 (1984)

    Article  Google Scholar 

  15. D. Villers and J.K. Platten, Marangoni convection in systems presenting a minimum in surface tension, PhysicoChemical Hydrodynamics, 6(4), 435 (1985)

    ADS  Google Scholar 

  16. C. Cuvelier and J.M. Driessen, Thermocapillary free boundaries in crystal growth, J. Fluid Mech., 169 1 (1986)

    Article  ADS  MATH  Google Scholar 

  17. M.C. Limbourg-Fontaine, G. Petré and J.C. Legros, Texus 8 experiment: effects of a surface tension minimum on thermocapillary convection, PhysicoChemical Hydrodynamics, 6(3), 301 (1985)

    ADS  Google Scholar 

  18. T. Maekawa, I. Tanasawa, J. Ochiai, K. Kuwahara, M. Morioka and S. Enya, Two-dimensional Marangoni and buoyancy convection related to crystal growth techniques in space, in “XXV COSPAR”, 1 (1984) and by the same authors in a different order, plus K. Sezaki Experimental study of Marangoni convection, in “Proceedings of the 5th European Symposium on Material Science under Microgravity”, ESA SP-222, 291 (1984)

    Google Scholar 

  19. J. Wiedemann, “Laser-Doppler Anemometrie”, Springer-Verlag (1984)

    Google Scholar 

  20. V.G. Levich, “Physicochemical Hydrodynamics”, Prentice-Hall (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Platten, J.K., Villers, D. (1988). On Thermocapillary Flows in Containers with Differentially Heated Side Walls. In: Velarde, M.G. (eds) Physicochemical Hydrodynamics. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0707-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0707-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8042-2

  • Online ISBN: 978-1-4613-0707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics