Skip to main content

Utilization of the Second Gradient Theory in Continuum Mechanics to Study the Motion and Thermodynamics of Liquid-Vapor Interfaces

  • Chapter
Physicochemical Hydrodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 174))

Abstract

A thermomechanical model of continuous media based on second gradient theory has been used to study the motions in liquid-vapor interfaces. In the equilibrium state this model is shown to be fundamentally equivalent to molecular theories. Conservative motions in such fluids verify the first integrals that provide Kelvin’s circulation theorems and potential equations. The dynamic surface tension of a liquid-vapor interface has been deduced from equations written with a viscosity factor. The result provides and explains the Marangoni effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Defay, I. Prigogine and A. Sanfeld, Surface Thermodynamics, Colloid. Interf. Sci., 58:498, (1977).

    Article  Google Scholar 

  2. A. Sanfeld, Thermodynamics of Surfaces, in: “Physical Chemistry, vol. 1”, Academic Press, New York, (1971).

    Google Scholar 

  3. G. Emschwiller, “Chimie Physique”, Presses Universitaires de France, Paris, (1961).

    Google Scholar 

  4. S. Davis, Rupture of Thin Liquid Films in: “Waves on Fluid Interfaces”, R. E. Meyer, ed., Academic Press, New York, (1983).

    Google Scholar 

  5. L. Landau and E. Lifchitz, “Fluid Mechanics”, Mir, Moscow, (1958).

    Google Scholar 

  6. A. K. Sen and S. H. Davis, Steady Thermocapillarity Flows in Two-Dimensional Slots, J. Fluid Mech., 121:163, (1982).

    Article  ADS  MATH  Google Scholar 

  7. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquid, in: “Structure of Liquids”, S. Flügge, ed., Encyclopedia of Physics, X, Springer-Verlag, Berlin, (1960).

    Google Scholar 

  8. V. Levitch, “Physicochemical Hydrodynamics”, Prentice-Hall, Englewood Cliffs, New Jersey, (1962).

    Google Scholar 

  9. Y. Rocard, “Thermodynamique”, Masson, Paris, (1952).

    MATH  Google Scholar 

  10. J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. III. Nucleation in a Two-Component Incompressible Fluid, J. Chem. Phys., 31:688, (1959).

    Article  ADS  Google Scholar 

  11. J. E. Dunn and J. Serrin, On the Thermomechanics of Interstitial Working, Arch. Ration. Mech. Anal., 88:95, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Brin, “Contribution à l’étude de la couche capillaire et de la Pression Osmotique”, Thesis, Paris, (1956).

    Google Scholar 

  13. J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity”, Clarendon Press, Oxford, (1982).

    Google Scholar 

  14. P. C. Hohenberg and B. I. Halperin, Theory of Dynamic Critical Phenomena, Reviews of Modern Physics, 49:435, (1977).

    Article  ADS  Google Scholar 

  15. E. C. Aifantis and J. B. Serrin, The Mechanical Theory of Fluid Interfaces and Maxwell’s Rule, J. Colloid Interf. Sci., 96:517, (1983).

    Article  Google Scholar 

  16. G. Bruhat, “Cours de Physique Générale - Thermodynamique”, Masson, Paris, (1968).

    Google Scholar 

  17. P. Casai, La théorie du second gradient et la capillarité, C. R. Acad. Sc. Paris, 274:1571, (1972).

    Google Scholar 

  18. V. Bongiorno, L. E. Scriven, and H. T. Davis, Molecular Theory of Fluid Interfaces, J. Colloid Interf. Sci., 57:462, (1976).

    Article  Google Scholar 

  19. P. Casal and H. Gouin, Connection between the Energy Equation and the Motion Equation in Korteweg Theory of Capillarity, C. R. Acad. Sc. Paris, 300:231, (1985).

    MathSciNet  MATH  Google Scholar 

  20. P. Casal and H. Gouin, Kelvin’s Theorems and Potential Equation in Korteweg’s Theory of Capillarity, C. R. Acad. Sc. Paris, 300:301, (1985).

    MathSciNet  MATH  Google Scholar 

  21. H. Gouin, Dynamical Surface Tension and Marangoni Effect for Liquid-Vapor Interfaces in Internal Capillarity Theory, C. R. Acad. Sc. Paris, 303:5, (1986).

    ADS  MATH  Google Scholar 

  22. P. Casal, Capillarité interne en Mécanique des Milieux Continus, C. R. Acad. Sc. Paris, 256:3820, (1963).

    MATH  Google Scholar 

  23. J. D. Van der Waals, Thermodynamique de la Capillarité dans l’hypothèse d’une variation continue de densité, Arch. Néerlandaises, XXVIII: 121, (1894).

    Google Scholar 

  24. D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires, Arch. Néerlandaises, II, VI:1, (1901).

    Google Scholar 

  25. M. E. Gurtin, Thermodynamics and the Possibility of Spatial Interaction in Elastic Materials, Arch. Ration. Mech. Anal., 19:339, (1965).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus, J. Mécanique, 12:235, (1973).

    MathSciNet  MATH  Google Scholar 

  27. P. Casal, Principes variationnels en fluide compressible et en magnéto-dynamique des fluides, J. Mécanique, 5:149, (1966).

    MATH  Google Scholar 

  28. R. L. Seliger and G. B. Whitham, Variational Principles in Continuum Mechanics, Proc. Roy. Soc., A.305: l, (1968).

    Article  ADS  MATH  Google Scholar 

  29. P. Casal, La théorie du second gradient et la capillarité, C. R. Acad. Sc. Paris, A.274:806, (1972).

    MathSciNet  MATH  Google Scholar 

  30. H. Gouin, “Contribution à une étude géométrique et variationnelle des milieux continus”, Thesis, University of Aix-Marseille, (1978).

    Google Scholar 

  31. H. Gouin, Examples of Non-Conservative Perfect Fluid Motions, J. mécanique, 20:273, (1981).

    MathSciNet  MATH  Google Scholar 

  32. H. Gouin, Interpretation of Motions in Liquid-Vapor Interfaces through a Model in Continuum Mechanics, to appear in J. MĂ©c. Th. Appl.

    Google Scholar 

  33. M. Ishi, “Thermo-Fluid Dynamic Theory of Two-Phase Flow”, Eyrolles, Paris, (1975).

    Google Scholar 

  34. G. Birkhoff, Numerical Fluid Dynamics, SIAM Review, 25:31, (1983).

    Article  MathSciNet  Google Scholar 

  35. J. Serrin, Mathematical Principles of Classical Fluid Dynamics, in: “Fluid Dynamics 1”, S. Flügge, ed., Encyclopedia of Physics, VIII/1, Springer-Verlag, Berlin, (1959).

    Google Scholar 

  36. J. Pratz, “Contribution à la théorie du second gradient pour les milieux isotropes”, Thesis, University of Aix-Marseille, (1981).

    Google Scholar 

  37. C. Truesdell, “Rational Thermodynamics”, p. 30, Mac Graw Hill, New York, (1969).

    Google Scholar 

  38. H. Gouin, Noether Theorem in Fluid Mechanics, Mech. Res. Comm. 3:151, (1976).

    Article  MATH  Google Scholar 

  39. G. Valiron, “Equations fonctionnelles. Applications”, Masson, Paris, (1950).

    Google Scholar 

  40. P. Germain, “Mécanique des milieux continus”, p. 334–340, Masson, Paris, (1962).

    Google Scholar 

  41. A. K. Sen and S. H. Davis, Steady Thermocapillarity Flow in Two-dimensional Slots, J. Fluid Mech., 121:163, (1982).

    Article  ADS  MATH  Google Scholar 

  42. L. E. Scriven, Dynamics of a Fluid Interface. Equation of Motion for Newtonian Surface Fluids, Chem. Engng. Sci., 12:98, (1960)

    Article  Google Scholar 

  43. M. Slemrod, Admissibility Criteria for Propagating Phase Boundaries in a Van der Waals Fluid, Arch. Ration. Mech. Anal., 81:301, (1983).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Slemrod, Dynamic Phase Transitions in a Van der Waals Fluid, J. Diff. Equ., 52:1, (1984).

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Dunn, Interstitial Working and a Nonclassical Continuum Thermodynamics in “New Perspectives in Thermodynamics”, ed. J. Serrin, Springer-Verlag, Berlin, (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Gouin, H. (1988). Utilization of the Second Gradient Theory in Continuum Mechanics to Study the Motion and Thermodynamics of Liquid-Vapor Interfaces. In: Velarde, M.G. (eds) Physicochemical Hydrodynamics. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0707-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0707-5_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8042-2

  • Online ISBN: 978-1-4613-0707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics