Skip to main content

Transduction and Signaling in Airway Smooth Muscle

  • Chapter
Airway Smooth Muscle in Health and Disease
  • 60 Accesses

Abstract

Advances in knowledge of the metabolic pathways of transduction systems, over the past 5 years, have given us a fairly detailed picture of the nature of the chemical reactions associated with physiological functions. Most of these reactions have been studied in systems other than airway smooth muscle, e.g., blowfly salivary glands, liver, platelets, neutrophils, secretory cells, and vascular and iris smooth muscle. A number of scientific meetings on this subject have taken place over recent years covering more general areas of signal transduction (Poste and Crooke, 1985; Everd and Whelen, 1986; Poste and Crooke, 1986; Strand, 1986) and one that focused on airway smooth muscle (Nadel et al., 1985). In addition, there have been a number of reviews and a book that deal with aspects of smooth muscle biochemistry and signal transduction (Stephens, 1977; Takenawa, 1982; Cauvin and Van Breemen, 1984; Barnes and Cuss, 1986; Russell, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latiff, A. A., 1974, Effects of neurotransmitters and other pharmacological agents on 32Pi incorporation into phospholipids of the iris muscle of the rabbit, Life Sci. 15:961–973.

    Google Scholar 

  • Abdel-Latiff, A. A., Akhtar, R. A., and Hawthorne, J. N., 1977. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelîed with [32P]phosphate, Biochem. J. 162:61–73.

    Google Scholar 

  • Aiyar, N., Nambi, P., Stassen, F. L., and Crooke, S. T., 1986, Vascular vasopressin receptors mediate phosphatidylinositol turnover and calcium efflux in an established smooth muscle cell line, Life Sci. 39:37–45.

    PubMed  CAS  Google Scholar 

  • Akhtar, R. A., and Abdel-Latiff, A. A., 1980, Requirement for calcium ions in acetylcholine-stimulated phophodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle, Biochem. J. 192:783–791.

    PubMed  CAS  Google Scholar 

  • Akhtar, R. A., and Abdel-Latiff, A. A., 1984, Carbachol causes rapid phophodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline- and inophore A23187-stimulated accumulation of inositol phosphates, Biochem. J. 224:291–300.

    PubMed  CAS  Google Scholar 

  • Akhtar, R. A., and Abdel-Latiff, A. A., 1986, Surgical sympathetic denervation increases alphar adrenoceptor-mediated accumulation of myo-inositol trisphosphate and muscle contraction in rabbit iris dilator smooth muscle, J. Neurochem. 46:96–104.

    PubMed  CAS  Google Scholar 

  • Alexander, R. W., Brock, T. A., Gimbrone, M. A., Jr., and Rittenhouse, S., 1985, Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle, Hypertension 7:447–451.

    PubMed  CAS  Google Scholar 

  • Banno, Y., Nakashima, S., and Nozawa, Y., 1986, Partial purification of phosphoinositide phospholipase C from human platelet cytosol; characterization of its three forms, Biochem. Biophys. Res. Commun. 136:713–721.

    PubMed  CAS  Google Scholar 

  • Baraban, J. M., Gould, R. J., Peroutka, S. J., and Snyder, S. H., 1985, Phorbol ester effects on neurotransmission: Interaction with neurotransmitters and calcium in smooth muscle, Proc. Natl. Acad. Sci. USA 82:604–607.

    PubMed  CAS  Google Scholar 

  • Barnes, P., and Cuss, F. M., 1986, Biochemistry of airway smooth muscle, Bull. Eur. Physiopathol. Respir. 22(Suppl. 7):191–200.

    PubMed  CAS  Google Scholar 

  • Baron, C. B., and Coburn, R. F., 1987, Inositol phospholipid turnover during contraction of canine trachealis muscle, Ann. NY Acad. Sci. 494:80–83.

    Google Scholar 

  • Baron, C. B., and Coburn, R. F., 1989, Phorbol 12,13-dibutyrate inhibits and reverses phosphatidylinositol and phosphatidic acid pool size changes and inhibits [3H]-myo-inositol flux in canine trachealis smooth muscle, (in preparation).

    Google Scholar 

  • Baron, C. B., Cunningham, M., Strauss, J. F. III, and Coburn, R. F., 1984, Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism, Proc. Natl. Acad. Sci. USA 81:6899–6903.

    PubMed  CAS  Google Scholar 

  • Baron, C. B., Pring, M., and Coburn, R. F., 1989, Synthesis and compartmentation of inositol phospholipids in unstimulated and carbamoylcholine-stimulated smooth muscle, Am. J. Physiol. 256: (in press).

    Google Scholar 

  • Batty, I. R., Nahorski, S. R., and Irvine, R. F., 1985, Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215.

    PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1985, Inositol trisphosphate and diacylglycerol as intracellular second messengers, in: Mechanisms of Receptor Regulation (G. Poste and S. T. Crooke, eds.), pp. 111–130, Plenum, New York.

    Google Scholar 

  • Berridge, M. J., 1986a, Agonist-dependent phosphoinositide metabolism: A bifurcating signal pathway, in: New Insights into Cell and Membrane Transport Processes (G. Poste and S. T. Crooke, eds.), pp. 201–216, Plenum, New York.

    Google Scholar 

  • Berridge, M. J., 1986b, Inositol trisphosphate and calcium mobilization, in: Calcium and the Cell, Ciba Foundation Symposium No. 122 (D. Evered and J. Whelan, eds.), pp. 39–57, Wiley, Chichester.

    Google Scholar 

  • Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature (Lond.) 312:315–321.

    CAS  Google Scholar 

  • Berridge, M. J., Heslop, J. P., Irvine, R. F., and Brown,,K. D., 1984, Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor, Biochem. J. 222:195–201.

    PubMed  CAS  Google Scholar 

  • Berry, G., Yandrastiz, J. R., and Segal, S., 1983, CMP-dependent phosphatidylinositol: Myoinositol exchange activity in isolated nerve-endings, Biochem. Biophys. Res. Commun. 112:817–821.

    PubMed  CAS  Google Scholar 

  • Berta, P., Sladeczek, F., Travo, P., Bockaert, J., and Haiech, J., 1986, Activation of phosphatidylinositol synthesis by different agonists in a primary culture of smooth muscle cells grown on collagen microcarriers, FEBS Lett. 200:27–31.

    PubMed  CAS  Google Scholar 

  • Bianca, V. D., Grzeskowiak, M., Cassatella, M. A., Zeni, L., and Rossi, F., 1986, Phorbol 12, myristate 13, acetate protentiates the respiratory burst while inhibits phosphoinositide hydrolysis and calcium mobilization by formyl-methionyl-leucyl-phenylalanine in human neutrophils, Biochem. Biophys. Res. Commun. 135:556–565.

    PubMed  Google Scholar 

  • Bitar, K. N., Bradford, P. G., Putney, J. W., Jr., and Makhlou, G. M., 1986, Stoichiometry of contraction and Ca2+ mobilization by inositol 1,4,5-trisphosphate in isolated gastric smooth muscle cells, J. Biol. Chem. 261:16591–16596.

    PubMed  CAS  Google Scholar 

  • Bradford, P. G., and Rubin, R. P., 1986, Quantitative changes in inositol 1,4,5-trisphosphate in chemoattractant-stimulated neurophils, J. Biol. Chem. 261:15644–15647.

    PubMed  CAS  Google Scholar 

  • Brock, T. A., Rittenhouse, S. E., Powers, C. W., Ekstein, L. S., Gimbrone, M. A., Jr., and Alexander, R. W., 1985, Phorbol ester and l-oleoyl-2-acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells, J. Biol. Chem. 260:15158– 14162.

    Google Scholar 

  • Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W., Jr., 1984, The second messenger linking receptor activation to internal Ca2+ in liver, Nature (Lond.) 309:63–66.

    CAS  Google Scholar 

  • Burgess, G. M., McKinney, J. S., Irvine, R. F., and Putney, J. W., Jr., 1985, Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+ -mobilizing-hormone-activated cells, Biochem. J. 232:237–243.

    PubMed  CAS  Google Scholar 

  • Campbell, M. D., Deth, R. C, Payne, R. A., and Honeyman, T. W., 1985, Phosphoinositide hydrolysis is correlated with agonist-induced calcium flux and contraction in the rabbit aorta, Eur. J. Pharmacol. 116:129–136.

    PubMed  CAS  Google Scholar 

  • Canessa de Scamati, O., and Lapetina, E. G., 1974, Adrenergic stimulation of phosphatidylinositol labelling in rat vas deferens, Biochim. Biophys. Acta. 360:298–305.

    Google Scholar 

  • Cauvin, C, and Van Breemen, C, 1984, Regulation of Ca2+ levels in smooth-muscle cells, Biochem. Soc. Trans. 12:939–941.

    PubMed  CAS  Google Scholar 

  • Charest, R., Prpic, V., Exton, J. H., and Blackmore, P. F., 1985, Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenalin and angiotensin II and its relationship to changes in cytosolic free Ca2+, Biochem. J. 227:79–90.

    PubMed  CAS  Google Scholar 

  • Chuang, D.-M., 1986, Carbachol-induced accumulation of inositol-1-phosphate in neurohybridoma NCB-20 cells: Effects of lithium and phorbol esters, Biochem. Biophys. Res. Commun. 136:622–629.

    PubMed  CAS  Google Scholar 

  • Chung, S. M., Proia, A. D., Klintworth, G. K., Watson, S. P., and Lapetina, E. G., 1985, Deoxycholate induces the preferential hydrolysis of polyphosphoinositides by human platelet and rat corneal phospholipase C, Biochem. Biophys. Res. Commun. 129:411–416.

    PubMed  CAS  Google Scholar 

  • Clapper, D. L., and Lee, H. C, 1985, Inositol trisphosphate induces calcium release from nonmitochondrial stores in sea urchin egg homogenates, J. Biol. Chem. 260:13947–13964.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., Baldwin, J. M., and Allan, D., 1984, The Ca2+-activated polyphosphoinositide phosphodiesterase of human and rabbit neutrophil membranes, Biochem. J. 221:477–482.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1985, Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature (Lond.) 314:534–536.

    CAS  Google Scholar 

  • Coleman, R. A., and Bell, R. M., 1983, Topography of membrane-bound enzymes that metabolize complex lipids, in: The Enzymes, Vol. XVI (P. D. Boyer, ed.), pp. 605–625, Academic, New York.

    Google Scholar 

  • Colucci, W. S., Gimbrone, M. A., Jr., and Alexander, R. W., 1986, Phorbol diester modulates alpha-adrenergic receptor-coupled calcium efflux and alpha-adrenergic receptor number in culture vascular smooth muscle cells, Circ. Res. 58:393–398.

    PubMed  CAS  Google Scholar 

  • Connolly, T. M., Wilson, D.B., Brass, T. E., and Majerus, P. W., 1986, Isoation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C, J. Biol. Chem. 261:122–126.

    PubMed  CAS  Google Scholar 

  • Cotecchia, S., Leeb-Lundberg, L. M. F., Hagen, P-O., Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol ester effects on alphax-adrenoceptor binding and phosphatidylinositol metabolism in cultured vascular smooth muscle cells, Life Sci. 37:2389–2398.

    PubMed  CAS  Google Scholar 

  • Dale, M. M., and Obianime, W., 1985, Phorbol myristate acetate causes in guinea-pig lung parenchymal strip a maintained spasm which is relatively resistant to isoprenaline, FEBS Lett. 190:6–10.

    PubMed  CAS  Google Scholar 

  • Danthuluri, N. R., and Deth, R. C, 1984, Phorbol ester-induced contraction of arterial smooth muscle and inhibition of alpha-adrenergic response, Biochem. Biophys. Res. Commun. 125:1103–1109.

    PubMed  CAS  Google Scholar 

  • Dawson, A. P., and Irvine, R. F., 1984, Inositol 1,4,5-trisphosphate-promoted Ca2+ release from microsomal fraction of rat liver, Biochem. Biophys. Res. Commun. 120:858–864.

    PubMed  CAS  Google Scholar 

  • Dawson, A. P., Comerford, J. G., and Fulton, D. V., 1986, The effect of GTP on inositol 1,4,5-trisphosphate-stimulation of Ca2+ efflux from a rat liver microsomal fraction: Is a GTP-dependent protein phosphorylation involved?, Biochem. J. 234:311–315.

    PubMed  CAS  Google Scholar 

  • De Chaffoy de Courcelles, D., Leysen, J. E., De Clerck, F., Van Belle, H., and Janssen, P. A. J., 1985, Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites, J. Biol. Chem. 260:7603–7608.

    PubMed  Google Scholar 

  • Deckmyn, H., Tu, S-M., and Majerus, P. W., 1986, Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes, J. Biol. Chem. 261:16553–16558.

    PubMed  CAS  Google Scholar 

  • Denan, C. K., and Moskowitz, M. A., 1986, Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments: Bradykinin-2 receptor stimulation is calcium-independent, J. Biol. Chem. 261:3831–3837.

    Google Scholar 

  • Dixon, J. F., and Hokin, L. E., 1984, Secretogogue-stimulated phosphatidylinositol breakdown in the exocrine pancreas literates arachidonic acid, steraic acid, and glycerol by sequential action of phospholipase C and diglyceride lipase, J. Biol. Chem. 259:14418–14425.

    PubMed  CAS  Google Scholar 

  • Dixon, J. F., and Hokin, L. E., 1985, The formation of inositol 1,2-cyclic phosphate on agonist stimulation of phosphoinositide breakdown in mouse pancreatic minilobules: Evidence for direct phosphodiesteratic cleavage of phosphatidylinositol, J. Biol. Chem. 260:16068–16071.

    PubMed  CAS  Google Scholar 

  • Donaldson, J., and Hill, S. J., 1985, Histamine-induced inositol phospholipid breakdown in the longitudinal smooth muscle of guinea-pig ileum, Br., J. Pharmacol. 85:499–512.

    CAS  Google Scholar 

  • Downes, C. P., Hawkins, P. T., and Irvine, R. F., Inositol-1,3,4,5-tetrakisphosphate and not phosphatidylinositol 3,4-bisphosphate is the probable precursor of inositol 1,3,4-trisphosphate in agonist-stimulated parotid glands, Biochem. J. 238:501–506.

    Google Scholar 

  • Dunlop, M. E., and Malaisse, W. J., 1986, Phosphoinositide phosphorylation and hydrolysis in pancreatic islet cell membrane, Arch. Biochem. Biophys. 244:421–429.

    PubMed  CAS  Google Scholar 

  • Egawa, K., Sacktor, B., and Takenawa, T., 1981, Ca2+-dependent and Ca2+-independent degradation of phosphatidylinositol in rabbit vas deferens, Biochem. J. 194:129–136.

    PubMed  CAS  Google Scholar 

  • Enyedi, P., Mucsi, I., Hunyady, L., Catt, K. J., and Spat, A., 1986, The role of guanine nucleotide binding proteins in the formation of inositol phosphates in adrenal glomerulosa cells, Biochem. Biophys. Res. Commun. 140:941–947.

    PubMed  CAS  Google Scholar 

  • Esko, J. D., and Raetz, C. R., 1983, Synthesis of phospholipids in animal cells, in: The Enzymes, Vol. XVI (P. D. Boyer, ed.), pp. 207–253, Academic, New York.

    Google Scholar 

  • Everd, D., and Whelan, J. (eds.), 1986, Calcium and the Cell, Ciba Foundation Symposium No. 122, Wiley, Chichester.

    Google Scholar 

  • Exton, J. H., 1985, Role of calcium and phosphoinositides in the action of certain hormones and neurotransmitters, J. Clin. Invest. 75:1753–1757.

    PubMed  CAS  Google Scholar 

  • Farese, R. V., Kuo, J. Y., Babischkin, J. S., and Davis, J. S., 1986a, Insulin provokes a transient activation of phospholipase C in the rat epididymal fat pad, J. Biol. Chem. 261:8589–8592.

    CAS  Google Scholar 

  • Farese, R. V., Rosic, N., Babischkin, J., Farese, M. G., Foster, R., and Davis, J. S., 1986b, Dual activation of the inositol-trisphosphate-calcium and cyclic nucleotide intracellular signaling systems by adrenocorticotropin in rat adrenal cells, Biochem. Biophys. Res. Commun. 135:742–748.

    CAS  Google Scholar 

  • Forder, J., Scriabine, A., and Rasmussen, H., 1985, Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction, J. Pharmacol. Exp. Ther. 235:267–273.

    PubMed  CAS  Google Scholar 

  • Fox, A. W., Abel, P. W., and Minneman, K. P., 1985, Activation of alpha!-adrenoceptors increases [3H]inositol metabolism in rat vas deferens and caudal artery, Eur. J. Pharmacol. 116:145–152.

    PubMed  CAS  Google Scholar 

  • Garcia-Sainz, J. A., Tussie-Luna, M. I., and Hernandez-Sotomayor, S. M. T., 1986, Phorbol esters, vasopressin and angiotensin II block alphai-adrenergic action in rat hepatocytes. Possible role of protein kinase C, Biochim. Biophys. Acta 887:69–72.

    PubMed  CAS  Google Scholar 

  • Ghalayini, A., and Eichberg, J., 1985, Purification of phosphatidylinositol synthetase from rat brain by CDP-diacylglycerol affinity chromatography and properties of the purified enzyme, J. Neurochem. 44:175–182.

    PubMed  CAS  Google Scholar 

  • Gilman, A. G., Smigel, M. D., Bokoch, G. M., and Robishaw, J. D., 1985, Guanine-nucleotide-binding regulatory proteins: membrane-bound information transducers, in: Mechanisms of Receptor Regulation (G. Poste and S. T. Crooke, eds.), pp. 149–158, Plenum, New York.

    Google Scholar 

  • Goldman, Y. E., Reid, G. P., Somlyo, A. P., Somlyo, A. V., Trentham, D. R., and Water, J. W., 1986, Activation of skinned vascular smooth muscle by photolysis of “caged inositol trisphosphate” to inositol 1,4,5-trisphosphate (InsP3), J. Physiol. (Lond.) 377:100P.

    Google Scholar 

  • Gonzales, R. A., and Crews, F. T., 1985, Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes, Biochem. J. 232:799–804.

    PubMed  CAS  Google Scholar 

  • Gopalakrishna, R., Barsky, S. H., Thomas, T. P., and Anderson, W. B., 1986, Factors influencing chelator-stable, detergent-extractable, phorbol diester-induced membrane association of protein kinase C: Differences between Ca2+-induced and phorbol ester-stabilized membrane bindings of protein kinase C, J. Biol. Chem. 261:16438–16445.

    PubMed  CAS  Google Scholar 

  • Grandordy, B. ML, Cuss, F. M., Sampson, A. S., Palmer, J. H. B., and Barnes, P. J., 1986, Phosphatidylinositol response to cholinergic agonists in airway smooth muscle: Relationship to contraction and muscarinic receptor occupancy, J. Pharmacol. Exp. Ther. 238:273–279.

    PubMed  CAS  Google Scholar 

  • Griendling, K. K., Rittenhouse, W. E., Brock, T. A., Ekstein, L. S., Gimbrone, M. A., Jr., and Alexander, R. A., 1986, Sustained diacylglycerol formation form inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells, J. Biol. Chem. 261:5901–5906.

    PubMed  CAS  Google Scholar 

  • Hashimoto, T., Hirata, M., and Itoh, Y., 1985, A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle, Br. J. Pharmacol. 86: 191–199.

    PubMed  CAS  Google Scholar 

  • Hashimoto, T., Hirata, M., Itoh, Y., Kanmura, Y., and Kuriyama, H., 1986, Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery, J. Physiol. (Lond.) 370:605–618.

    CAS  Google Scholar 

  • Hawkins, P. T., Stephens, L., and Downes, C. P., 1986, Rapid formation of inositol-1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-bisphosphate, Biochem. J. 238:507–516.

    PubMed  CAS  Google Scholar 

  • Hawthorne, J. N., 1985, Inositol phospholipid and phosphatidic acid metabolism in response to membrane receptor activation, Proc. Nutr. Soc. 44:167–172.

    PubMed  CAS  Google Scholar 

  • Helsop, J. P., Irvine, R. F., Tashjian, A. H., and Berridge, M. J., 1985, Inositol tetrakis- and pentakisphosphates in GH4 cells, J. Exp. Biol. 119:395–401.

    Google Scholar 

  • Hirasawa, K., and Nishizuka, Y., 1985, Phosphatidylinositol turnover in receptor mechanism and signal transduction, Annu. Rev. Pharmacol. Toxicol. 25:147–170.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem. 54:205–235.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., and Hokin, M. R., 1955, Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices, Biochim. Biophys. Acta 18:102–110.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R., and Hokin, L. E., 1953, Enzyme secretion and the incorporation of 32P into phospholipids of pancreatic slices, J. Biol. Chem. 203:967–977.

    PubMed  CAS  Google Scholar 

  • Huque, T., and Bruch, R. C, 1986, Odorant- and guanine nucleotide-stimulated phosphoinositide turnover in olfactory cilia, Biochem. Biophys. Res. Commun. 137:36–42.

    PubMed  CAS  Google Scholar 

  • Imboden, J., 1987, Regulation of the inositol tris/tetrakisphosphate pathway during T cell activation, Presented at the 71st Meeting of the Federation of American societies for experimental biology, Washington, D.C.

    Google Scholar 

  • Irvine, R. F., and Moor, R. M., 1986, Micro-injection of inositol-1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240: 917–920.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Anggard, E. E., Letcher, A. J., and Downs, C. P., 1985, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands, Biochem. J. 229:505-511.

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Helsop, J. P., and Berridge, M. J., 1986, The inositol tris/tetrakisphosphate athway—Demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues, Nature (Lond.) 320:631–634.

    CAS  Google Scholar 

  • Iujvidin, S., and Mordoh, J., 1986, Metabolism of phosphatidyl-dCMP in sarcoma 180 cells: Effect of chlorpromazine, phosphatidic acid and inositol, Eur. J. Biochem. 154:187–192.

    PubMed  CAS  Google Scholar 

  • Jackowski, S., Rettenmier, C. W., Sherr, C. J., and Rock, C. O., 1986, A guanine nucleotide-dependent phosphatidylinositol 4,5-diphosphate phospholipase C in cells transformed by the v-fms and v-fes oncogenes, J. Biol. Chem. 261:4878–4985.

    Google Scholar 

  • Jafferji, S. S., and Michell, R. H., 1976, Muscarinic cholinergic stimulation of phosphatidylinositol turnover in the longitudinal smooth muscle of guinea-pig ileum, Biochem. J. 154:653–657.

    PubMed  CAS  Google Scholar 

  • Jean, T., and Klee, C. B., 1986, Calcium modulation of inositol 1,4,5-trisphosphate-induced calcium release from neuroblastoma x glioma hybrid (NG108–15) microsomes, J. Biol. Chem. 261:16414–16420.

    PubMed  CAS  Google Scholar 

  • Johnson, R. M., Connelly, P. A., Sisk, R. B., Pobiner, B. F., Hewlett, E. L., and Garrison, J. C, 1986, Pertussis toxin or phorbol 12-myristate 13-acetate can distinguish between epidermal growth factor- and angiotensin-stimulated signals in hepatocytes, Proc. Natl. Acad. Sci. USA 83:2032–2036.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., and Williamson, J. R., 1986, Characteristics of inositol trisphosphate-mediated Ca2+ release from permeabilized hepatocytes, J. Biol. Chem. 261:14658–14664.

    PubMed  CAS  Google Scholar 

  • Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F., and Williamson, J. R., 1984, Myoinositol 1,4,5-trisphosphate: A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077–3081.

    PubMed  CAS  Google Scholar 

  • Kamm, K. E., and Stull, J. T., 1986, Activation of smooth muscle contraction: Relation between myosin phosphorylation and stiffness, Science 232:80–82.

    PubMed  CAS  Google Scholar 

  • Kelly, S. M., and Ingraham, L. M., 1986, Action of granulocyte phospholipase C on inositol-containing phospholipids, Fed. Proc. 45:960.

    Google Scholar 

  • Kikkawa, U., and Nishizuka, Y., 1986a, The role of protein kinase C in transmembrane signalling, Annu. Rev. Cell Biol. 2:149–178.

    CAS  Google Scholar 

  • Kikkawa, U., and Nishizuka, Y., 1986b, Protein kinase C, in: The Enzymes, Vol. XVII (P. D. Boyer, ed.), pp. 167–189, Academic, New York.

    Google Scholar 

  • Kikkawa, U., Kitano, T., Saito, N., Kishimoto, A., Tankyama, K., Tanaka, C, and Nishizuka, Y., 1986, Role of protein kinase C in calcium-mediated signal transduction, in: Calcium and the Cell, Ciba Foundation Symposium No. 122 (D. Evered and J. Whelan, eds.), pp. 197–211, Wiley, Chichester.

    Google Scholar 

  • Kikuchi, A., Kozawa, O., Hamamori, Y., Kaibuchi, K., and Takai, Y., 1986, Inhibition of chemotactic peptide-induced phosphoinositide hydrolysis by phorbol esters through the activation of protein kinase C in differentiated human leukemia (HL-60) cells, Cancer Res. 46:3401–3406.

    PubMed  CAS  Google Scholar 

  • Leeb-Lundberg, L. M. R., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F., Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol esters promote alphai-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. Natl. Acad. Sci. USA 82:5651–5655.

    PubMed  CAS  Google Scholar 

  • Legan, E., Chernow, B., Parrillo, J., and Roth, B. L., 1985, Activation of phosphatidylinositol turnover in rat aorta by alpharadrenergic receptor stimulation, Eur. J. Pharmacol. 110:389-390.

    PubMed  CAS  Google Scholar 

  • Liebman, P. A., 1986, The role of cGMP control in visual receptor transduction, Neurosci. Res. 4(Suppl.):S35–S43.

    CAS  Google Scholar 

  • Liebman, P. A., 1987, Visual receptor transduction, Ann. NY Acad. Sci. 494:65–73.

    PubMed  CAS  Google Scholar 

  • Litosch, I., and Fain, J. N., 1985, 5-Methyltryptamine stimulates phospholipase C-mediated break-down of xogenous phosphoinositides by blowfly salivary gland membranes, J. Biol. Chem. 260:16052–16055.

    PubMed  CAS  Google Scholar 

  • Lucas, D. O., Bajjalieh, S. M., Kowalchyk, J. A., and Martin, T. F. J., 1985, Direct stimulation of thyrotropin-releasing hormone (TRH) of polyphosphoinositide hydrolysis in GH3 cell membranes by a guanine nucleotide-modulated mechanism, Biochem. Biophys. Res. Commun. 132:721–728.

    PubMed  CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. A., Bross, T. E., Ishii, H., Bansal, V. S., and Wilson, D. B., 1986, The metabolism of phosphoinositide-derived messenger molecules, Science 234:1519–1526.

    PubMed  CAS  Google Scholar 

  • McMillan, M., Chernow, B., and Roth, B. L., 1986, Phorbol esters inhibit alpha jadrenergic receptor-stimulated phosphoinositide hydrolysis and contraction in rat aorta: Evidence for a link between vascular contraction and phosphoinositide turnover, Biochem. Biophys. Res. Commun. 134:970–974.

    PubMed  CAS  Google Scholar 

  • Melin, P-M., Sundler, R., and Jergil, B., 1986, Phospholipase C in rat liver plasma membranes, FEBS Lett. 198:85–88.

    PubMed  CAS  Google Scholar 

  • Mendoza, S. A., Lopez-Rivas, A., Sinnett-Smith, J. W., and Rozengurt, E., 1986, Phorbol esters and diacylglycerol inhibit vasopressin-induced increases in cytoplasmic-free Ca2+ and 45Ca2+ efflux in Swiss 3T3 cells, Exp. Cell Res. 164:536–545.

    PubMed  CAS  Google Scholar 

  • Menkes, H., Barban, J. M., and Snyder, S. H., 1986, Protein kinase C regulates smooth muscle tension in guinea-pig trachea and ileum, Eur. J. Pharmacol. 122:19–28.

    PubMed  CAS  Google Scholar 

  • Merritt, J. E., Taylor, C. W., Rubin, R. P., and Putney, J. W., Jr., 1986, Isomers of inositol trisphospbate in exocrine pancreas, Biochem. J. 238:825–829.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., 1985, Receptor-controlled phosphatidylinositol 4,5-bisphosphate hydrolysis in the control of rapid receptor-mediated cellular responses and of cell proliferation, in: Mechanisms of Receptor Regulation (G. Poste and S. T. Crooke, eds.), pp. 75–94, Plenum, New York.

    Google Scholar 

  • Mizuguchi, J., Beaven, M. A., Li, J. H., and Paul, W. E., 1986, Phorbol myristate acetate inhibitsanti-IgM-mediated signaling in resting B cells, Proc. Natl. Acad. Sci. USA 83:4474–4478.

    PubMed  CAS  Google Scholar 

  • Molina y Vedia, L., and Lapetina, E. G., 1986, Phorbol 12,13-dibutyrate and l-oleyl-2-acetyldiacyl-glycerol stimulate inositol trisphosphate dephosphorylation in human platelets, J. Biol. Chem. 261:10493–10495.

    PubMed  CAS  Google Scholar 

  • Montague, W., Morgan, N. G., Rumford, G. M., and Prince, C. A., 1985, Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans, Biochem. J. 227:483–489.

    PubMed  CAS  Google Scholar 

  • Nabika, T., Velletri, P. A., Lovenberg, W., and Beavens, M. A., 1985, Increase in cytosolic calcium and phosphoinositide metabolism induced by angiotensin II and [Arg]vasopressin in vascular smooth muscle cells, J. Biol. Chem. 260:4661–4670.

    PubMed  CAS  Google Scholar 

  • Naccache, P. H., and Sha’afi, R. I., 1986, Neutrophil activation, polyphosphoinositide hydrolysis, and the guanine nucleotide regulatory proteins, in: New Insights into Cell and Membrane Transport Processes (G. Poste and S. T. Crooke, eds.), pp. 175–198, Plenum, New York.

    Google Scholar 

  • Nadel, J., Coburn, R., Murphy, R., Szurszewski, J., and Gail, D., 1985, Workshop on Airway Smooth Muscle. Summary of a Conference held September 25–27, 1983, Am. Rev. Respir. Dis. 131:159–162.

    Google Scholar 

  • Nahorski, S. R., and Batty, I., 1986, Inositol tetrakisphosphate: Recent developments in phosphoinositide metabolism and receptor function, Trends Pharmacol. Sci. 7:83–85.

    CAS  Google Scholar 

  • Nakaki, T., Roth, B. L., Chuang, D.-M., and Costa, E., 1985, Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: Participation of Ca2+ channels and protein kinase C, J. Pharmacol. Exp. Ther. 234:442–446.

    PubMed  CAS  Google Scholar 

  • Nakanishi, H., Nomura, H., Kikkawa, U., Kishioto, A., and Nishizuka, Y., 1985, Rat brain and liver soluble phospholipase C: Resolution of two forms with different requirements for calcium, Biochem. Biophys. Res. Commun. 132:582–590.

    PubMed  CAS  Google Scholar 

  • Nakashima, S., Tohmatsu, T., Hattori, H., Okano, Y., and Nozawa, Y., 1986, Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets, Biochem. Biophys. Res. Commun. 135:1099–1104.

    PubMed  CAS  Google Scholar 

  • Nanberg, E., and Putney, J., Jr., 1986, Alpha!-adrenergic activation of brown adipocytes leads to an increased formation of inositol polyphosphates, FEBS Lett. 195:319–322.

    PubMed  CAS  Google Scholar 

  • Nomura, H., Ase, K., Sekiguchi, K., Kikkawa, U., and Nishizuka, Y., 1986, Stereospecificity of diacylglycerol for stimulus-response coupling in platelets, Biochem. Biophys. Res. Commun. 140:1143–1151.

    PubMed  CAS  Google Scholar 

  • Orellana, S. A., Solski, P. A., and Brown, J. H., 1985, Phorbol ester inhibits phosphoinositide

    Google Scholar 

  • hydrolysis and calcium mobilization in cultured astrocytoma cells, J. Biol. Chem. 260:5236–5239.

    Google Scholar 

  • O’Rourke, F. A., Helenda, S. P., Zavoico, G. B., and Feinstein, M. B., 1985, Inositol 1,4,5-trisphosphate releases Ca2+ for a Ca2+-transporting membrane vesicle fraction derived from human platelets, J. Biol. Chem. 260:956–962.

    PubMed  Google Scholar 

  • Palmer, S., Hawkins, P. T., Michell, R. H., and Kirk, C. J., 1986, The labelling of polyphospho-inositides with [32P]Pi and the accumulation of inositol phosphates in vasopressin-stimulated hepatocytes, Biochem. J. 238:491–499.

    PubMed  CAS  Google Scholar 

  • Park, S., and Rasmussen, H., 1985, Activation of tracheal smooth muscle contraction: synergism between Ca2+ and activators of protein kinase C, Proc. Natl. Acad. Sci. USA 82:8835–8839.

    PubMed  CAS  Google Scholar 

  • Parries, G. S., and Hokin-Neaverson, M., 1984, Phosphatidylinositol synthase from canine pancreas: Solubilization by n-octyl glucopyranoside and stabilization by manganese, Biochemistry 23:4785–4791.

    PubMed  CAS  Google Scholar 

  • Poll, C, and Westwick, J., 1986, Phorbol esters modulate thrombin-operated calcium mobilization and dense granule release in human platelets, Biochim. Biophys. Acta 886:434–440.

    PubMed  CAS  Google Scholar 

  • Popescu, L. M., Hinescu, M. E., Musat, S., Ionescu, M., and Pistritzu, F., 1986, Inositol trisphosphate and the contraction of vascular smooth muscle cells, Eur. J. Pharmacol. 123:167–169.

    PubMed  CAS  Google Scholar 

  • Portilla, D., and Morrison, A. R., 1986, Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells, Biochem. Biophys. Res. Commun. 140:644–649.

    PubMed  CAS  Google Scholar 

  • Poste, G., and Crooke, S. T. (eds.), 1985, Mechanisms of Receptor Regulation, Plenum, New York.

    Google Scholar 

  • Poste, G., and Crooke, S. T. (eds.), 1986, New Insights into Cell and Membrane Transport Processes, Plenum, New York.

    Google Scholar 

  • Prentki, M., Janjic, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B., 1984, Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate, Nature (Lond.) 309:562–564.

    CAS  Google Scholar 

  • Ramsdell, J. S., and Tashjian, A. H., Jr., 1986, Thyrotropin-releasing hormone (TRH) elevation of inositol trisphosphate and cytosolic free calcium is dependent on receptor number: Evidence for multiple rapid interactions between TRH and its receptor, J. Biol. Chem. 261:5301–5306.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., Forder, J., Kojima, I., and Scriabine, A., 1984, TPA-induced contraction of isolated rabbit vascular muscle, Biochem. Biophys. Res. Commun. 122:776–784.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., Kojima, I., and Barrett, P., 1986, Information flow in the calcium messenger system, in: New Insights into Cell and Membrane Transport Processes (G. Poste and S. T. Crooke, eds.), pp. 145–174, Plenum, New York.

    Google Scholar 

  • Rebecchi, M. J., Kolesnick, R. N., and Gershengorn, M. C, 1983, Thyrotropin-releasing hormone stimulates rapid loss of phosphatidylinositol and its conversion to 1,2-diacylglycerol and phosphatide acid in rat mammotropic pituitary cells: Association with calcium mobilization and prolactin secretion, J. Biol. Chem. 258:227–234.

    PubMed  CAS  Google Scholar 

  • Rittenhouse, S. E., and Sasson, J. P., 1985, Mass change in myoinositol trisphosphate in human platelets stimulated by thrombin: Inhibitory effects of phorbol ester, J. Biol. Chem. 260:8657–8660.

    PubMed  CAS  Google Scholar 

  • Rodbell, M., 1985, Signal transduction in biological membranes, in: Mechanisms of Receptor Regulation (G. Poste and S. T. Crooke, eds.), pp. 65–74, Plenum, New York.

    Google Scholar 

  • Rodriguez-Pena, A., Zachary, I., and Rozengurt, E., 1986, Rapid dephosphorylation of a 80000 protein, a specific substrate of protein kinase C upon removal of phorbol esters, bombesin and vasopressin, Biochem. Biophys. Res. Commun. 140:379–285.

    PubMed  CAS  Google Scholar 

  • Rosier, M. F., Dentand, A., Lew, P. D., Capponi, A. M., Vallotton, M. B., 1986, Interconversion of inositol (l,4,5)-trisphosphate to inositol (l,3,4,5)-tetrakisphosphate and (l,3,4)-trisphosphate in permeabilized adrenal glomerulosa cells is calcium-sensitive and ATP-dependent, Biochem. Biophys. Res. Commun. 139:259–265.

    Google Scholar 

  • Roth, B. L., Nakake, T., Chaung, D-M., and Costa, E., 1986, 5-Hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: Modulation of phosphoinositide turnover by phorbol ester, J. Pharmacol. Exp. Ther. 238:480–485.

    PubMed  CAS  Google Scholar 

  • Russell, J. A., 1986, Tracheal smooth muscle, Clin. Chest Med. 7:189–200.

    PubMed  CAS  Google Scholar 

  • Sadler, K., Litosch, I., and Fain, J. N., 1984, Phosphoinositide synthesis and Ca2+ gating in blowfly salivary glands exposed to 5-hydroxytryptamine, Biochem. J. 222:327–334.

    PubMed  CAS  Google Scholar 

  • Salmon, D. M., and Honeyman, T. W., 1979, Increased phosphatidate accumulation during single contractions of isolated smooth-muscle cells, Biochem. Soc. Trans. 7:986–988.

    PubMed  CAS  Google Scholar 

  • Salmon, D. M., and Honeyman, T. W., 1980, Proposed mechanism of cholinergic action in smooth muscle, Nature (Lond.) 284:344–345.

    CAS  Google Scholar 

  • Sasaguri, T., Hirata, M., and Kuriyama, H., 1985, Dependence on Ca2+ of the activities of phosphatidylinositol 4,5-bisphosphate phosphodiesterase and inositol 1,4,5-trisphosphatase in smooth muscles in the procine coronary artery, Biochem. J. 231:497–503.

    PubMed  CAS  Google Scholar 

  • Sasakawa, N., Ishii, K., Yamamoto, S., and Kato, R., 1986, Differential effects on protein kinase C activators on carbamylcholine- and high K+-induced rises in intracellular free calcium concentration in cultured adrenal chromaffin cells, Biochem. Biophys. Res. Commun. 139:903-909.

    PubMed  CAS  Google Scholar 

  • Sekar, M. C, and Hokin, L. E., 1986, The role of phosphoinositides in signal transduction, J. Membr. Biol. 89:193–210.

    PubMed  CAS  Google Scholar 

  • Sekar, M. C, and Roufogalis, M. D., 1984, Muscarinic-receptor stimulation enhances polyphosphoinositide breakdown in guinea-pig ileum smooth muscle, Biochem. J. 223:527–531.

    PubMed  CAS  Google Scholar 

  • Seyfred, M. A., and Wells, W. W., 1984, Subcellular site and mechanism of vasopressin-stimulated hydrolysis of phosphoinositides in rat hepatocytes, J. Biol. Chem. 259:7666–7672.

    PubMed  CAS  Google Scholar 

  • Sha’afi, R. I., Molski, T. F. P., Huang, C-H., and Naccache, P. H., 1986, The inhibition of neutrophil responsiveness caused by phorbol esters is blocked by the protein kinase C inhibitor H7, Biochem. Biophys. Res. Commun. 137:50–60.

    PubMed  Google Scholar 

  • Smith, C. D., Lane, B. C, Kusaka, I., Verghese, M. W., and Snyderman, R., 1985, Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes: Requirement for guanine nucleotide regulatory protein, J. Biol. Chem. 260:5875–5878.

    PubMed  CAS  Google Scholar 

  • Smith, C. D., Cox, C. C, and Snyderman, R., 1986, Receptor-coupled activation of polyphosphoinositide-specific phospholipase C by an N protein, Science. 232:97–100.

    PubMed  CAS  Google Scholar 

  • Smith, J. B., Smith, L. S., Brown, E. R., Barnes, D., Sabir, M. A., Davis, J. S., andFarese, R. V., 1984, Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells, Proc. Natl. Acad. Sci. USA 81:7812–7816.

    PubMed  CAS  Google Scholar 

  • Smith, J. B., Smith, L., and Higgins, B. L., 1985, Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells, J. Biol. Chem. 260:14413–14416.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. V., Bond, M., Somlyo, A. P., and Scarpa, A., 1985, Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle, Proc. Natl. Acad. Sci. USA 82:5231–5235.

    PubMed  CAS  Google Scholar 

  • Strand, F. L. (ed.), 1987, Third Colloquium in Biological Sciences: Cellular Signal Transduction, Vol. 494, New York Academy of Sciences, New York.

    Google Scholar 

  • Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol 1,4,5-trisphosphate, Nature (Lond.) 306:67–69.

    CAS  Google Scholar 

  • Stephens, N. L. (ed.), 1977, Biochemistry of Smooth Muscle, University Park Press, Baltimore.

    Google Scholar 

  • Strulovici, B., Stadel, J. M., and Lefkowitz, R. J., 1985, Adenylate-cyclase-coupled beta-adrenergic receptors: Biochemical mechanisms of desensitization, in: Mechanisms of Receptor Regulation (G. Poste and S. T. Crooke, eds.), pp. 279–294, Plenum, New York.

    Google Scholar 

  • Stryer, L., and Bourne, H. R., 1986, G proteins: A family of signal transducers, Annu. Rev. Cell Biol. 2:391–419.

    PubMed  CAS  Google Scholar 

  • Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Commun. 120:481–485.

    PubMed  CAS  Google Scholar 

  • Suematsu, E., Hirata, M., Sasguri, T., Hashimoto, T., and Kuriyama, H., 1985a, Roles of Ca2+ on the Inositol 1,4,5-trisphosphate-induced release of Ca2+ from saponin-permeabilized single cells of the porcine coronary artery, Comp. Biochem. Physiol. 82A:645–649.

    CAS  Google Scholar 

  • Suematsu, E., Nishimura, J., Hirata, M., Inamitsu, T., and Ibayashi, H., 1985b, Inositol 1,4,5-trisphosphate and intracellular Ca2+ store sites in human periperal lymphocytes, Biomed. Res. 6:279–286.

    CAS  Google Scholar 

  • Takenawa, T., 1982, Inositol phospholipids in stimulated smooth muscles, Cell Calcium 3:359–368.

    PubMed  CAS  Google Scholar 

  • Takuwa, Y., Takuwa, N., and Rasmussen, H., 1986, Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle: Measurements of the mass of polyphosphoinositides, 1,2-diacylglycerol, and phosphatidic acid, J. Biol. Chem. 261:14670–14675.

    PubMed  CAS  Google Scholar 

  • Thomas, A. P., Alexander, J., and Williamson, J. R., 1984, Relationship between inositol polyphosphoinositide production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574–5584.

    PubMed  CAS  Google Scholar 

  • Tohmatsu, T., Hattori, H., Nagao, S., Ohki, K., and Nozawa, Y., 1986, Reversal by protein kinase C inhibitor of suppressive actions of phorbol 12-myristate 13-acetate on polyphosphoinositide metabolism and cytosolic Ca2+ mobilization in thrombin-stimulated human platelets, Biochem. Biophys. Res. Commun. 134:868–875.

    PubMed  CAS  Google Scholar 

  • Troyer, D. A., Schwartz, D. W., Kreisberg, J. I., and Venkatachalam, M. A., 1986, Inositol phospholipid metabolism in the kidney, Annu. Rev. Physiol. 48:51–71.

    PubMed  CAS  Google Scholar 

  • Ueda, T., Chueh, S-H., Noel, M. W., and Gill, D. L., 1986, Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the NIE-115 neuronal cell line, J. Biol. Chem. 261:3184–3192.

    PubMed  CAS  Google Scholar 

  • Uhing, R. J., Prpic, V., Jiang, H., and Exton, J. H., 1986, Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes: Role of guanine nucleotides and calcium, J. Biol. Chem. 261:2140–2146.

    PubMed  CAS  Google Scholar 

  • Velasco, G., Shears, S. B., Michell, R. H., and Lazo, P. S., 1986, Calcium uptake by intracellular compartments in permeabilised enterocytes: Effect of inositol 1,4,5-trisphosphate, Biochem. Biophys. Res. Commun. 139:612–618.

    PubMed  CAS  Google Scholar 

  • Vicentini, L. M., Di Virgilio, F., Ambrosini, A., Pozzan, T., and Meldolesi, J., 1985, Tumor promoter phorbol 12-myristate, 13-acetate inhibits phosphoinositide hydrolysis and cytosolic Ca2+ rise induced by the activation of muscarinic receptors in PC 12 cells, Biochem. Biophys. Res. Commun. 127:310–317.

    PubMed  CAS  Google Scholar 

  • Vickers, J. D., and Mustard, J. F., 1986, The phosphoinositides exist in multiple pools in rabbit platelets, Biochem. J. 238:411–417.

    PubMed  CAS  Google Scholar 

  • Villalobos-Molina, R., Hong, E., and Garcia-Sainz, J. A., 1982, Correlation between phos-phatidylinositol labeling and contraction in rabbit aorta: Effect of alpha-1 adrenergic activation, J. Pharmacol. Exp. Ther. 222:258–261.

    PubMed  CAS  Google Scholar 

  • Wagner, B., Fugner, M-L., Schachtele, C, Marme, D., and Osswald, H., 1986, Phorbolester-induced contractions of vascular smooth muscles, Pflugers Arch. 406:R41.

    Google Scholar 

  • Watson, S. P., and Lapetina, E. G., 1985, 1,2-Diacylglycerol and phorbol ester inhibit agonist-induced formation of inositol phosphates in human platelets: Possible implications for negative feedback regulation of inositol phospholipid hydrolysis, Proc. Natl. Acad. Sci. USA 82:2623-2626.

    PubMed  CAS  Google Scholar 

  • Williamson, J. R., 1986, Role of inositol lipid breakdown in the generation of intracellular signals: State of the art lecture, Hypertension 8 [Suppl II]:II-140–II-156.

    CAS  Google Scholar 

  • Williamson, J. R., Joseph, S. K., Coll, K. E., Thomas, A. P., Verhoeven, A., and Prentki, M., 1986, Hormone-induced inositol lipid breakdown and calcium-mediated cellular responses in liver, in: New Insights into Cell and Membrane Transport Processes (G. Poste and S. T. Crooke, eds.), pp. 217–248, Plenum, New York.

    Google Scholar 

  • Williamson, J. R., Hansen, C. A., Johanson, R. A., Cooll, K. E., and Williamson, M., 1988, Formation and metabolism of inositol phosphates: The inositol tris/tetrakisphosphate pathway, Adv. Expt. Med. Biol. 232:183–195.

    CAS  Google Scholar 

  • Wilson, D. B., Bross, T. E., Hofmann, S. L., and Majerus, P. W., 1984, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes, J. Biol. Chem. 259:11718–11724.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., Bross, T. E., Sherman, W. R., Berger, R. A., and Majerus, P. W., 1985a, Inositol cyclic phosphates are produced by cleavage of phosphatidylphosphoinositols (polyphospho-inositides) with purified sheep seminal vesicle phospholipase C enzymes, Proc. Natl. Acad. Sci. USA 82:4013–4017.

    CAS  Google Scholar 

  • Wilson, D. B., Connolly, T. M., Bross, T. E., Majerus, P. W., Sherman, W. R., Tyler, A. N., Rubin, L. J., and Brown, J. E., 1985b, Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C: Physiological effects in permeabilized platelets and Limulus photoreceptor cells, J. Biol. Chem. 260:13496–13501.

    CAS  Google Scholar 

  • Wilson, D. B., Neufeld, E. J., and Majerus, P. W., 1985c, Phosphomositide interconversion in thrombin-stimulated human platelets, J. Biol. Chem. 260:1046–1051.

    CAS  Google Scholar 

  • Wolf, M., LeVine, H. III, May, W. S., Jr., Cuatrecasas, P., and Sahyoun, N., 1985, A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters, Nature (Lond.) 317:546–549.

    CAS  Google Scholar 

  • Zavoico, G. B., Helenda, S. P., Sha’afi, R. I., and Feinstein, M. B., 1985, Phorbol myristate acetate inhibits thrombin-stimulated Ca2+ mobilization and phosphatidylinositol 4,5-bisphosphate hydrolysis in human platelets, Proc. Natl. Acad. Sci. USA 82:3859–3862.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Baron, C.B. (1989). Transduction and Signaling in Airway Smooth Muscle. In: Coburn, R.F. (eds) Airway Smooth Muscle in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0779-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0779-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8078-1

  • Online ISBN: 978-1-4613-0779-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics