Skip to main content

Primary and Secondary Metabolism of Polyamines in Plants

  • Chapter
Plant Nitrogen Metabolism

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 23))

Abstract

The diamine putrescine and the polyamines spermidine and spermine are amino acid-derived, aliphatic nitrogenous compounds of wide distribution among plant cells (Fig.1). The earliest reference to polyamines in the scientific literature is van Leeuwenhoek’s classic letter to the Royal Society of London in 1678. During his studies describing spermatozoa, he observed the gradual formation of colorless crystals upon drying the samples. The correct structure of these crystals, which corresponded to spermine, was not determined until over 250 years later.1 Spermidine was later found in mammalian tissues. The related diamines putrescine and cadaverine were found in decomposing animal and vegetable matter as a result of microbial activity. Within this historical frame, it is not surprising that earlier studies on these compounds were done mostly on non-plant systems. Recent interest in the function of polyamines in higher plants is in good part derived from discoveries in microbial and animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ROSENHEIM, O. 1924. The isolation of spermine phosphate from semen and testis. Biochem. J. 18: 1253–1263.

    Google Scholar 

  2. BACHRACH, U. 1973. Function of naturally occurring polyamines. Academic Press, New York, 211 pp.

    Google Scholar 

  3. COHEN, S.S. 1971. Introduction to the polyamines. Prentice-Hall, New Jersey, 179 pp.

    Google Scholar 

  4. McCANN, P.P., A.E. PEGG, A. SJOERDSMA. 1987. Inhibition of Polyamine Metabolism: Biological Significance and Basis for New Therapies. Academic Press, San Diego, 371 pp.

    Google Scholar 

  5. RICHARDS, F.J., R.G. COLEMAN. 1952. Occurrence of putrescine in potassium-deficient barley. Nature 170: 460.

    ADS  Google Scholar 

  6. SLOCUM, R.D., R. KAUR-SAWHNEY, A.W. GALSTON. 1984. The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys. 235: 283–303.

    Google Scholar 

  7. SMITH, T.A. 1984. Putrescine and inorganic ions. Recent Adv. Phytochem. 18: 7–54.

    Google Scholar 

  8. SMITH, T.A. 1985. Polyamines. Annu. Rev. Plant Physiol. 36: 117–143.

    Google Scholar 

  9. SMITH, T.A. 1979. Arginine decarobylase of oat seedlings. Phytochemistry 18: 1447–1452.

    Google Scholar 

  10. OSHIMA, T. 1979. Molecular basis for unusual thermostabilities of cell constituents from an extreme thermophile, Thermus thermophilus. In Strategies of Microbial Life in Extreme Environments. (M. Shilo, ed.), Dahlem-Konferenzen, Berlin, pp. 455–469.

    Google Scholar 

  11. BAGNI, N. 1968. Spermine e spermidine nei semi. G. Bot. Ital. 102: 67–72.

    Google Scholar 

  12. FLORES, H.E., A.W. GALSTON. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701–706.

    Google Scholar 

  13. SMITH, B.N., B.J.D. MEEUSE. 1966. Production of volatile amines in some arum lily species. Plant Physiol. 41: 343–347.

    Google Scholar 

  14. SMITH, T.A. 1975. Recent advances in the biochemistry of plant amines. Phytochemistry 14: 865–890.

    Google Scholar 

  15. TAIT, G.H. 1976. A new pathway for the biosynthesis of spermidine. Biochem. Soc. Trans. 4: 610–612.

    Google Scholar 

  16. SRIVENUGOPAL, K.S., P.R. ADIGA. 1980. Partial purification and properties of a transamidinase from Lathyrus sativa seedlings. Biochem. J. 189: 553–560.

    Google Scholar 

  17. KUTTAN, R., R. RADAKRISHNAN. 1972. Studies on the biosynthesis of sym-homospermidine in sandal (Santalum album L.). Biochem. J. 127: 61–67.

    Google Scholar 

  18. SRIVENUGOPAL, K.S., P.R. ADIGA. 1980. Enzymic synthesis of sym-homospermidine in Lathyrus sativa (grass pea) seedlings. Biochem. J. 190: 461–464.

    Google Scholar 

  19. SMITH, T.A. 1971. The occurrence, metabolism and functions of amines in plants. Biol. Rev. Camb. Philos. Soc. 46: 201–241.

    Google Scholar 

  20. REUTER, G. 1963. Arginine als vorstuffe von galegin in Galega officinalis L. Arch. Pharm. (Weinheim) 296: 516–522.

    Google Scholar 

  21. JOHNE, S., D. GROGER, R. RADEGLIA. 1975. Tetra-methylputrescine from young plants of Ruellia rosea. Phytochemistry 14: 2635–2636.

    Google Scholar 

  22. GRIFFIN, W.J. 1967. The alkaloids of Duboisia leichhardtii: tetramethyl putrescine. Australas. J. Pharm. 48: S20–21 (Suppl. 51).

    Google Scholar 

  23. KREBS, H.A., K. HENSELEIT. 1932. Untersuchungen uber die harnstoffbildung im tierkorper. Hoppe-Seyler’s Z. Physiol. Chem. 210: 33–66.

    Google Scholar 

  24. BEEVERS, L. 1976. Nitrogen Metabolism in Plants. Edward Arnold, London, 333 pp.

    Google Scholar 

  25. BAGNI, N., G.L. CALZONI, A. SPERANZA. 1978. Polyamines as sole nitrogen sources for Helianthus tuberosus explants in vitro. New Phytol. 80: 317–323.

    Google Scholar 

  26. MORRIS, D.R., A.B. PARDEE. 1966. Multiple pathways of putrescine synthesis in Escherichia coli. J. Biol. Chem. 241: 3129–3135.

    Google Scholar 

  27. KAUR-SAWHNEY, R., L.M. SHIH, H.E. FLORES, A.W. GALSTON. 1982. Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiol. 69: 405–410.

    Google Scholar 

  28. CHOUDHURI, M.M., B. GHOSH. 1982. Purification and partial characterization of arginine decarboxylase from rice embryos (Oryza sativa L.). Agric. Biol. Chem. 46: 739–743.

    Google Scholar 

  29. KYRIAKIDIS, D.A. 1983. Effect of plant growth hormones and polyamines on ornithine decarboxylase activity during the germination of barley seeds. Physiol. Plant. 57: 499–504.

    Google Scholar 

  30. YANAGISAWA, H., Y. SUZUKI. 1982. Purification and properties of N-carbamylputrescine amidohydrolase from maize shoots. Phytochemistry 21: 2201–2203.

    Google Scholar 

  31. MARETZKI, A., M. THOM, L.G. NICKELL. 1969. Products of arginine catabolism in growing cells of sugarcane. Phytochemistry 8: 811–818.

    Google Scholar 

  32. CROCOMO, O.J., L.C. BASSO, O.G. BRASIL. 1970. Formation of N-carbamyl putrescine from citrulline in Sesamum. Phytochemistry 9: 1487–1489.

    Google Scholar 

  33. SMITH, T.A. 1963. L-Arginine carboxylase of higher plants and its relation to potassium nutrition. Phytochemistry 2: 241–252.

    Google Scholar 

  34. SMITH, T.A. 1965. N-carbamylputrescine amidohydrolase of higher plants and its relation to potassium nutrition. Phytochemistry 2: 241–252.

    Google Scholar 

  35. LE RUDULIER, D., G. GOAS. 1980. Biogenese de N-carbamyl putrescine et de la putrescine dans les plantules de Glycine max (L.) Merr. Physiol. Veg. 18: 609–616.

    Google Scholar 

  36. SRIVENUGOPAL, K.S., P.R. ADIGA. 1981. Enzymic conversion of agmatine to putrescine in Lathyrus sativus. J. Biol. Chem. 256: 9532–9541.

    Google Scholar 

  37. PRASAD, G.L., P.R. ADIGA. 1986. Purification and characterization of putrescine synthase from cucumber seedlings. A multifunctional enzyme involved in putrescine biosynthesis. J. Biosci. 10: 373–391.

    Google Scholar 

  38. PRASAD, G.L., P.R. ADIGA. 1987. Arginine decar boxylase is a component activity of the multifunctional enzyme putrescine synthase in cucumber seedlings. J. Biosci. 11 571–579.

    Google Scholar 

  39. SPERANZA, A., N. BAGNI. 1978. Products of L-(14C carbamoyl) citrulline metabolism in Helianthus tuberosus activated tissue. Z. Pflanzenphysiol. 88: 163–168.

    Google Scholar 

  40. TABOR, C.W., H. TABOR. 1985. Polyamines in microorganisms. Microbiol. Rev. 49: 81–99.

    Google Scholar 

  41. COHEN, S.S., R. BALINT, R.K. SINDHU. 1981. The synthesis of polyamines from methionine in intact and disrupted leaf protoplasts of virus-infected Chinese cabbage. Plant Physiol. 68: 1150–1155.

    Google Scholar 

  42. SUZUKI, Y., E. HIRASAWA. 1980. S-adenosylmethionine decarboxylase of corn seedlings. Plant Physiol. 66: 1091–1094.

    Google Scholar 

  43. YAMANOHA, B., S.S. COHEN. 1985. S-adenosylmethio nine decarboxylase and spermidine synthase from Chinese cabbage. Plant Physiol. 78: 784–790.

    Google Scholar 

  44. HIATT, A.C., J. McINDOO, R.L. MALMBERG. 1986. Regulation of polyamine biosynthesis in tobacco. J. Biol. Chem. 261: 1293–1298.

    Google Scholar 

  45. SURESH, M.R., P.R. ADIGA. 1977. Putrescine-sensitive (artifactual) and insensitive (biosynthetic) S-adenosyl-L-methionine decarboxylase activities of Lathyrus sativus seedlings. Eur. J. Biochem. 79: 511–518.

    Google Scholar 

  46. SINDHU, R.K., S.S. COHEN. 1984. Subcellular localization of spermidine synthase in the protoplast of Chinese cabbage leaves. Plant Physiol. 76: 219–223.

    Google Scholar 

  47. SRIVENUGOPAL, K.S., P.R. ADIGA. 1980. Coexistence of two pathways of spermidine biosynthesis in Lathyrus sativus seedlings. FEBS Lett. 112: 260–264.

    Google Scholar 

  48. KAUR-SAWHNEY, R., A.W. GALSTON. 1979. Interaction of polyamines and light on biochemical processes involved in leaf senescence. Plant Cell Environ. 2: 189–196.

    Google Scholar 

  49. GALSTON, A.W., R.K. SAWHNEY. 1987. Polyamines and senescence in plants. In Plant Senescence: Its Biochemistry and Physiology. (W.W. Thomson, E.A. Nothnagel, R.C. Huffaker, eds.), American Society of Plant Physiology, Rockville, Maryland, pp. 167–181.

    Google Scholar 

  50. EVEN-CHEN, Z., A.K. MATT00, R. GOREN. 1982. Inhibition of ethylene biosynthesis by amino-ethoxyvinylglycine and by polyamines shunts label from 3,4[14C]methionine into spermidine in aged orange peel discs. Plant Physiol. 69: 385–388.

    Google Scholar 

  51. ROBERTS, D.R., M.A. WLAKER, J.E. THOMPSON, E.B. DUMBROFF. 1984. The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers. Plant Cell Physiol. 25: 315–322.

    Google Scholar 

  52. WERLE, E., E. PECHMANN. 1949. Uber die diamin-oxydase der pflanzen und ihre adaptive bildung durch bakterien. Justus Liebigs Ann. Chem. 562: 44–60.

    Google Scholar 

  53. HILL, J.M. 1971. Diamine oxidase (pea seedlings). Methods Enzymol. 17B: 730–735.

    ADS  Google Scholar 

  54. YANAGISAWA, H., E. HIRASAWA, Y. SUZUKI. 1981. Purification and properties of diamine oxidase from pea epicotyl. Phytochemistry 20: 2105–2108.

    Google Scholar 

  55. SMITH, T.A. 1983. Polyamine oxidase (oat seedlings). Methods Enzymol. 94: 311–314.

    Google Scholar 

  56. SUZUKI, Y., H. YANAGISAWA. 1980. Purification and properties of maize polyamine oxidase: a flavo-protein. Plant Cell Physiol. 21: 1085–1094.

    Google Scholar 

  57. SMITH, T.A. 1970. Polyamine oxidase in higher plants. Biochem. Biophys. Res. Commun. 41: 1452–1456.

    Google Scholar 

  58. FLORES, H.E. 1983. Studies on the physiology and biochemistry of polyamines in higher plants. Ph.D. Dissertation, Yale University, 209 pp.

    Google Scholar 

  59. KAUR-SAWHNEY, R., H.E. FLORES, A.W. GALSTON. 1981. Polyamine oxidase in oat leaves: a cell wall localized enzyme. Plant Physiol. 68: 494–498.

    Google Scholar 

  60. FLORES, H.E., P. FILNER. 1985. Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. Plant Growth Regul. 3: 277–291.

    Google Scholar 

  61. FEDERICO, R., R. ANGELINI, M.P. ARGENT0 CERU, F. MANES. 1985. Immunohistochemical demonstration of lentil diamine oxidase. Cell. Mol. Biol. 31: 171–174.

    Google Scholar 

  62. DE MARTY, M., A. AYADI, A. MONIER, C. MORVAN, M. THELLIER. 1977. Electrochemical properties of isolated cell walls of Lemna minor. In Transmembrane Ionic Exchanges in Plants. (M. Thellier, A. Monier, M. De Marty, J. Dainty, eds.), C.N.R.S., Rouen, pp. 61–73.

    Google Scholar 

  63. RINALDI, A., G. FLORIS, A. FINAZZI-AGRO. 1982. Purification and properties of diamine oxidase from Euphorbia latex. Eur. J. Biochem. 127: 417–422.

    Google Scholar 

  64. BALINT, R., G. COOPER, M. STAEBELL, P. FILNER. 1987. N-Caffeoyl-4-amino n-butyric acid, a new flower-specific metabolite in cultured tobacco cells and tobacco plants. J. Biol. Chem. 262: 11026–11031.

    Google Scholar 

  65. SLOCUM, R.D., A.W. GALSTON. 1987. Inhibition of polyamine biosynthesis in plants and plant pathogenic fungi. In Inhibition of Polyamine Metabolism. (P.P. McCann, A.E. Pegg, A. Sjoerdsma, eds.), Academic Press, San Diego, pp. 305–316.

    Google Scholar 

  66. BEY, P., C. DANZIN, M. JUNG. 1987. Inhibition of basic amino acid decarboxylases involved in polyamine biosynthesis. Op. cit. Reference 4, pp. 1–31.

    Google Scholar 

  67. FLORES, H.E., A.W. GALSTON. 1982. Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science 217: 1259–1261.

    ADS  Google Scholar 

  68. FEIRER, R.P., G. MIGNON, J.D. LITVAY. 1984. Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science 223: 1433–1435.

    ADS  Google Scholar 

  69. TIBURCIO, A.F., A.W. GALSTON. 1986. Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25: 107–110.

    Google Scholar 

  70. SLOCUM, R.D., A.J. BITONTI, P.P. McCANN, R.P. FEIRER. 1988. [3H]-DL-α-Difluoromethylarginine metabolism in tobacco and mammalian cells: inhibition of ornithine decarboxylase activity following arginase-mediated hydrolysis of DFMA to DFMO. Biochem. J. 255: 197-202.

    Google Scholar 

  71. MALMBERG, R.L., J. McINDOO. 1983. Abnormal flower development of a tobacco mutant with elevated polyamine levels. Nature 305: 623–625.

    ADS  Google Scholar 

  72. PEGG, A.E., H.G. WILLIAMS-ASHMAN. 1987. Pharmacologic interference with enzymes of polyamine biosynthesis and of 5’-methylthioadenosine metabolism. Op. cit. Reference 4, pp. 33–48.

    Google Scholar 

  73. BITONTI, A.J., P.P. McCANN. 1982. Inhibition of polyamine biosynthesis in microorganisms. Op. cit. Reference 4, pp. 259–275.

    Google Scholar 

  74. GREENBERG, M.L., S.S. COHEN. 1985. Dicyclohexylamine-induced shift of biosynthesis from spermidine to spermine in plant protoplasts. Plant Physiol. 78: 568–575.

    Google Scholar 

  75. TIBURCIO A.F., R. KAUR-SAWHNEY, A.W. GALSTON. 1988. Polyamine biosynthesis during vegetative and floral bud differentiation in thin layer tobacco tissue cultures. Plant Cell Physiol. 29: 1241–1249

    Google Scholar 

  76. KOBAYASHI, K., S. MIYASAWA, A. ENDO. 1977. Isolation and inhibitory activity of gabaculine, a new potent inhibitor of gamma-aminobutyrate aminotransferase produced by a Streptomyces. FEBS Lett. 76: 207–210.

    Google Scholar 

  77. TABOR, C.W., H. TABOR. 1983. Polyamines. Methods Enzymol. 94: 497.

    Google Scholar 

  78. SMITH, T.A., J.H.A. MARSHALL. 1987. The oxidative decarboxylation of ornithine by extracts of higher plants. Phytochemistry 27: 703–710.

    Google Scholar 

  79. ZAPPIA, V., C.R. CARTENI-FARINA, P. GALLETTI. 1977. Adenosylmethionine and polyamine biosynthesis m human prostrate. In The Biochemistry of Adenosylmethionine. (F. Salvatore, E. Borek, V. Zappia, H.G. Williams-Ashman, F. Schlenk, eds.), Columbia University Press, New York, pp. 473–492.

    Google Scholar 

  80. MANEN, C.M., D.H. RUSSEL. 1974. Comparative properties of rat liver and sea urchin eggs: S-adenosyl-L-methionine decarboxylase. Biochemistry 13: 4729–4735.

    Google Scholar 

  81. CHIBNALL, A.C. 1939. Protein metabolism in the plant. Yale University Press, New Haven, Connecticut, 306 pp.

    Google Scholar 

  82. RICHARDS, F.J., W.G. TEMPLEMAN. 1936. Physiological studies in plant nutrition. IV. Nitrogen metabolism in relation to nutrient deficiency and age in leaves of barley. Ann. Bot. 50:367–402.

    Google Scholar 

  83. RICHARDS, F.J., R.G. COLEMAN. 1952. Occurrence of putrescine in potassium-deficient barley. Nature 170: 460.

    ADS  Google Scholar 

  84. RICHARDS, F.J., E. BERNER, JR. 1954. Physiological studies in plant nutrition. XVII. A general survey of the free amino acids of barley leaves as affected by mineral nutrition with special reference to potassium supply. Ann. Bot. 18: 15–33.

    Google Scholar 

  85. COLEMAN, T.G., F.J. RICHARDS. 1956. Physiological studies in plant nutrition. XVIII. Some aspects of nitrogen metabolism in barley and other plants in relation to potassium deficiency. Ann. Bot. 20: 393–409.

    Google Scholar 

  86. COLEMAN, R.G. 1958. Occurrence of ornithine in sulphur-deficient flax and the possible place of ornithine and citrulline in the arginine metabolism of some higher plants. Nature 181: 776–777.

    ADS  Google Scholar 

  87. HACKETT, C., C. SINCLAIR, F.J. RICHARDS. 1965. Balance between potassium and phosphorus in the nutrition of barley. I. The influence on amine content. Ann. Bot. 29: 331–345.

    Google Scholar 

  88. TAKAHASHI, T., D. YOSHIDA. 1960. Relationship between the accumulation of putrescine and the nutrition of tobacco plant. J. Sci. Soil Manure (Japan) 31: 39–41.

    Google Scholar 

  89. BASSO, L.C., T.A. SMITH. 1974. Effect of mineral deficiency on amine formation in higher plants. Phytochemistry 13: 875–883.

    Google Scholar 

  90. COLEMAN, R.G., M.P. HEGARTY. 1957. Metabolism of DL-ornithine-2-14C in normal and potassium deficient barley. Nature 172: 376–377.

    ADS  Google Scholar 

  91. SMITH, T.A., F.J. RICHARDS. 1962. The biosynthesis of putrescine in higher plants and its relation to potassium nutrition. Biochem. J. 84: 292–294.

    Google Scholar 

  92. SMITH, T.A. 1970. The biosynthesis and metabolism of putrescine in higher plants. Ann. N.Y. Acad. Sci. 171: 988–1001.

    ADS  Google Scholar 

  93. YOUNG, N.D., A.W. GALSTON. 1983. Putrescine and acid stress: induction of arginine decarboxylase activity and putrescine accumulation by low pH. Plant Physiol. 71: 767–771.

    Google Scholar 

  94. GALE, E.F. 1940. The production of amines by bacteria. III. The production of putrescine from (+)-arginine by Bacterium coli in symbiosis with Streptococcus faecalis. Biochem. J. 34: 853–857.

    Google Scholar 

  95. SMITH, T.A., C. SINCLAIR. 1967. The effect of acid feeding on amine formation in barley. Ann. Bot. 31: 103–111.

    Google Scholar 

  96. LE RUDULIER, D., G. GOAS. 1975. Influence des ions ammonium et potassium sur l’accumulation de la putrewcine chez les jeunes plantes de Soja hispida Moench privees de leurs cotyledons. Physiol. Veg. 13: 125–136.

    Google Scholar 

  97. FLORES, H.E., A.W. GALSTON. 1984. Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol. 75: 102–113.

    Google Scholar 

  98. MURTY, K.S., T.A. SMITH, C. BOULD. 1971. The relation between the putrescine content and potassium status of black currant leaves. Ann. Bot. 356: 687–695.

    Google Scholar 

  99. SURESH, M.R., S. RAMAKARISHNA, P.R. ADIGA. 1978. Regulation of arginine decarboxylase and putrescine levels in Cucumis sativus cotyledons. Phytochemistry 17: 57–63.

    Google Scholar 

  100. PRIEBE, A., H. KLEIN, H.J. JAGER. 1978. Effect of NaCl on the levels of putrescine and related polyamines in plants differing in salt tolerance. Plant Sci. Lett. 12: 365–369.

    Google Scholar 

  101. LE RUDULIER, D., G. GOAS. 1971. Mise en evidence et dosage de quelques amines dans les plantules de Soja hispida Moench privees de leurs cotyledons et cultivees en presence de nitrates, d’uree et de chlorure d’ammonium. Compt. Rend. Acad. Sci. (Paris) Ser. D. 279: 161–163.

    Google Scholar 

  102. LE RUDULIER, D., G. GOAS. 1979. Contribution a 1’etude de l’accumulation de putrescine et de la putrescine dans les plantules de Glycine max (L.) Merr. Physiol. Veg. 18: 609–616.

    Google Scholar 

  103. BLAIR, G.J., M.H. MILLER, W.A. MITCHELL. 1970. Nitrate and ammonium as sources of nitrogen for corn and their influence on uptake of other ions. Agronomy J. 62: 530–532.

    Google Scholar 

  104. ROBERTS, J.K.M. 1984. Study of plant metabolism in vivo using NMR spectroscopy. Annu. Rev. Plant Physiol. 35: 375–386.

    Google Scholar 

  105. FLORES, H.E., N.D. YOUNG, A.W. GALSTON. 1985. Polyamine metabolism and plant stress. In Cellular and Molecular Biology of Plant Stress. (J.L. Key, T. Kosuge, eds.), Alan R. Liss, New York, pp. 93–114.

    Google Scholar 

  106. SHEVYAKOVA, N.I. 1981. Metabolism and the physio logical role of diamines and polyamines in plants. Sov. Plant Physiol. 28: 1052–1061.

    Google Scholar 

  107. SHEVYAKOVA, N.I. 1966. On the stimulating and toxic effects of diamines on plants. Sov. Plant Physiol. 13: 472–475.

    Google Scholar 

  108. TIBURCIO, A.F., R. KAUR-SAWHNEY, A.W. GALSTON. 1986. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol. 82: 375–378.

    Google Scholar 

  109. DEROSA, M., S. DEROSA, A. GAMBACORTA, M. CARTENI-FARIA, V. ZAPPIA. 1976. Occurrence and characterization of new polyamines in the extreme thermophile Caldariella acidophila. Biochem. Biophys. Res. Commun. 69: 253–261.

    Google Scholar 

  110. OSHIMA, T. 1983. Novel polyamines in Thermus thermophilus: Isolation, identification, and chemical synthesis. Meth. Enzymol. 94: 401–411.

    Google Scholar 

  111. OSHIMA, T. 1982. A pentaamine is present in an extreme thermophile. J. Biol. Chem., 9913–9914.

    Google Scholar 

  112. RODRIGUEZ-GARAY, B., G.C. PHILLIPS, G.D. KUEHN. 1989. Detection of norspermidine and norspermine in Medicago sativa L. Plant Physiol. 89: 525–529.

    Google Scholar 

  113. HERBST, E.J. E.E. SNELL. 1948. Putrescine as a growth factor for Haemophilus parainfluenzae. J. Biol. Chem. 176: 989–990.

    Google Scholar 

  114. SNEATH, P.H.A. 1955. Putrescine as an essential growth factor for a mutant of Aspergillus nidulans. Nature 175: 818.

    ADS  Google Scholar 

  115. TABOR, C.W., H. TABOR. 1984. Polyamines. Annu. Rev. Biochem. 53: 749–490.

    Google Scholar 

  116. BAGNI, N. 1966. Aliphatic amines and a growth factor of coconut milk as stimulating cellular proliferation of Helianthus tuberosus (Jerusalem artichoke) in vitro. Experientia 22: 732–733.

    Google Scholar 

  117. GALSTON, A.W. 1983. Polyamines as modulators of plant development. BioScience 33: 382–388.

    Google Scholar 

  118. FELIX, H., J. HARR. 1987. Association of polyamines to different parts of various plant species. Physiol. Plant. 71: 245–250.

    Google Scholar 

  119. DUMORTIER, F.M., H.E. FLORES, N.S. SHEKHAWAT, A.W. GALSTON. 1983. Gradient of polyamines and their biosynthesis enzymes in coleoptiles and roots of corn. Plant Physiol. 72: 915–918.

    Google Scholar 

  120. PHILIPS, R., M.C. PRESS, A. EASON. 1987. Polyamines in relation to cell division and xylogenesis in cultured explants of Helianthus tuberosus: lack of evidence for growth-regulatory action. J. Exp. Bot. 38: 164–172.

    Google Scholar 

  121. DAI, Y.R., R. KAUR-SAWHNEY, A.W. GALSTON. 1982. Promotion by gibberellic acid of polyamine biosynthesis in internodes of light-grown dwarf pea. Plant Physiol. 69: 103–105.

    Google Scholar 

  122. SMITH, M.A., P.J. DAVIES, J.B. REID. 1985. Role of polyamines in gibberellin-induced internode growth in peas. Plant Physiol. 78: 92–99.

    Google Scholar 

  123. CHO, S. 1983. Enhancement by putrescine of gibberellin-induced elongation in hypocotyls of lettuce seedlings. Plant Cell Physiol. 24: 305–308.

    Google Scholar 

  124. JARVIS, B.C., P.R.M. SHANNON, S. YASMIN. 1983. Involvement of polyamines with adventitous root development in stem cuttings of mung bean. Plant Cell Physiol. 24: 677–683.

    Google Scholar 

  125. FRIEDMAN, R., A. ALTMAN, U. BACHRACH. 1985. Polyamines and root formation in mung bean hypocotyl cuttings. Plant Physiol. 79: 80–83.

    Google Scholar 

  126. GALSTON, A.W., R.K. SAWHNEY. 1982. Polyamines: are they a new class of growth regulators? In Plant Growth Substances. (P.F. Wareing, eds), Academic Press, London, pp. 451–461.

    Google Scholar 

  127. BAGNI, N., R. PISTOCCHI. 1985. Putrescine uptake in Saintpaulia petals. Plant Physiol. 77: 398–402.

    Google Scholar 

  128. PISTOCCHI, R., N. BAGNI, J.A. CREUS. 1987. Polyamine uptake in carrot cell cultures. Plant Physiol. 84: 374–380.

    Google Scholar 

  129. YOUNG, N.D., A.W. GALSTON. 1983. Are polyamines transported in etiolated peas? Plant Physiol. 73: 912–914.

    Google Scholar 

  130. BAGNI, N., R. BARALDI, G. COSTA. 1984. Translocation and metabolism of aliphatic polyamines in leaves and fruitlets of Malus domestica (cv. Ruby Spur). Acta Hortic. (The Hague) 149: 173–178.

    Google Scholar 

  131. PISTOCCHI, R., N. BAGNI, J.A. CREUS. 1986. Polyamine uptake, kinetics, and competition among polyamines and between polyamines and inorganic cations. Plant Physiol. 80: 556–560.

    Google Scholar 

  132. FRIEDMAN, R., N. LEVIN, A. ALTMAN. 1986. Presence and identification of polyamines in xylem and phloem exudates of plants. Plant Physiol. 82: 1154–1157.

    Google Scholar 

  133. GOLDBERG, R., E. PEDRIZET. 1984. Ratio of free to bound polyamines during maturation in mung-bean hypocotyl cells. Planta 161: 531–535.

    Google Scholar 

  134. PANAGIOTIDIS, C.A., J.G. GEORGATSOS, D.A. KYRIAKIDIS. 1982. Superinduction of cytosolic and chromatin-bound ornithine decarboxylase activities of germinating barley seeds by actinomycin D. FEBS Lett. 146: 193–196.

    Google Scholar 

  135. WALKER, M.A., B.E. ELLIS, C.C.S. CHAPPLE, E.B. DUMBROFF. 1987. Subcellular localization of amines and activities of their biosynthetic enzymes in p-fluorphenylalanine resistant and wild type tobacco cell cultures. Plant Physiol. 85: 78–81.

    Google Scholar 

  136. JAIN, J.C., P.D. SHARGOOL, S. CHUNG. 1987. Compartmentation studies on enzymes of ornithine biosynthesis in plant cells. Plant Sci. (Shannon) 51: 17–20.

    Google Scholar 

  137. TORRIGIANI, P., D. SERAFINI-FRACASSINI, S. BIONDI, N. BAGNI. 1986. Evidence for the subcellular localization of polyamines and their biosynthetic enzymes in plant cells. J. Plant Physiol. 124: 23–29.

    Google Scholar 

  138. STEWARD, F.C. 1958. Growth and development of cultivated cells. III. Interpretations of the growth from free cell to carrot plant. Am. J. Bot. 45: 709–713.

    Google Scholar 

  139. SUNG, Z.R. 1985. Developmental states of embryo-genic cultures. In Proceeding of the International Workshop on Somatic Embryogenesis in Carrots. (M. Terzi, L. Pitto, Z.R. Sung, eds.), Cons. Natl. Ricerche, Pisa, pp. 22–31.

    Google Scholar 

  140. MONTAGUE, M.J., J.W. KOPPENBRINK, E.G. JAWORSKI. 1978 Polyamine metabolism in embryogenic cells of Daucus carota. I. Changes in intracellular content and rates of synthesis. Plant Physiol. 62: 430–433.

    Google Scholar 

  141. MONTAGUE, M.J., T.A. ARMSTRONG, E.G. JAWORSKI. 1979. Polyamine metabolism in embryogenic cells in Daucus carota. II. Changes in arginine decarboxylase activity. Plant Physiol. 63: 341–345.

    Google Scholar 

  142. FEIRER, R.P., S.R. WANN, D.W. EINSPAHR. 1985. The effects of spermidine synthesis inhibitors on in vitro plant development. Plant Growth Regul. 3: 319–328.

    Google Scholar 

  143. FIENBERG, A.A., J.H. CHOI, W.P. LUBICH, Z.R. SUNG. 1984. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162: 532–539.

    Google Scholar 

  144. GUHA, S., S.C. MAHESWARI. 1964. In vitro production of embryos from anthers of Datura. Nature 204: 497.

    ADS  Google Scholar 

  145. BOURGIN, J.P., J.P. NITSCH. 1967. Obtention de Nicotiana haploides a partir de’etamines cultivees in vitro. Ann. Physiol. Veg. 9: 377–382.

    Google Scholar 

  146. BAKER, S.R., L.H. JONES, R.J. YON. 1983. Ornithine carbamoyltransferase activity and embryogenesis in a carrot cell suspension culture. Phytochemistry 22: 2167–2169.

    Google Scholar 

  147. BRADLEY, P.M., F. EL-FIKI, K.L. GILES. 1984. Polyamines and arginine affect embryogenesis of Daucus carota. Plant Sci. Lett. 34: 397–401.

    Google Scholar 

  148. THOMAS, H., D. GRIERSON, eds. 1987. Developmental Mutants in Higher Plants. Soc. Exp. Biol., Cambridge University Press, Cambridge, 287 pp.

    Google Scholar 

  149. SERAFINI-FRACASSINI, D., U. MOSSETTI. 1986. What is the function of conjugated polyamines in plants? In Biomedical Studies on Natural Polyamines. (C.M. Caldarera, C. Clo, C. Gaurniera, eds.), CLUEB, Bologna, pp. 197–202.

    Google Scholar 

  150. MARTIN-TANGUY, J. 1985. The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul. 3: 381–400.

    Google Scholar 

  151. CABANNE, F., J. MARTIN-TANGUY, C. MARTIN. 1977. Phenolamines associes a l’induction florale et a l’etat reproducteur du Nicotiana tabacum var. Xanthi. Physiol. Veg. 15: 445–451.

    Google Scholar 

  152. MBADIWE, E.I. 1973. Caffeoylputrescine from Pentaclethra macrophylla. Phytochemistry 12: 2546.

    Google Scholar 

  153. BUTA, J.G., R.R. IZAC. 1972. Solanaceae: caffeoylputrescine in Nicotiana tabacum. Phytochemistry 11: 1188–1189.

    Google Scholar 

  154. RYABININ, A.A., E.M. IL’INA. 1949. The alkaloid Salsola subaphylla. Drob. Dokl. Akad. Nauk. USSR 67: 513–616.

    Google Scholar 

  155. WHEATON, T.A., I. STEWART. 1965. Feruloylputrescine: isolation and identification from citrus leaves and fruits. Nature 206: 620–621.

    ADS  Google Scholar 

  156. MIZUSAKI, S., Y. TANABE, M. NUGUCHI. 1971. p-Coumaroylputrescine, caffeoylputrescine and feruloylputrescine from callus tissue culture of Nicotiana tabacum. Phytochemistry 10: 1347–1350.

    Google Scholar 

  157. MARTIN-TANGUY, J., C. MARTIN, M. GALLET, R. VERNOY. 1976. Sur de puissants inhibiteurs naturels de multiplication di virus de la mosaique du tubac. C.R. Seances Acad. Sci. (Paris) Ser. D. 282: 2231.

    Google Scholar 

  158. STOESSL, A. 1965. The antifungal factors in barley. III. Isolation of p-coumaroylagmatine. Phytochemistry 12: 973–977.

    Google Scholar 

  159. STOESSL, A., C.H. UNWIN. 1978. The antifungal factors in barley. V. Antifungal activity of the hordatines. Can. J. Bot. 48: 465–470.

    Google Scholar 

  160. BIRD, C.R., T.A. SMITH. 1981. The biosynthesis of coumaroylagmatine barley seedlings. Phytochemistry 10: 2345–2346.

    Google Scholar 

  161. SMITH, T.A., G.R. REST. 1978. Distribution of the hordatines in barley. Phytochemistry 17: 1093–1098.

    Google Scholar 

  162. CLARKE, D.D. 1982. The accumulation of cinnamic acid amides in the cell walls of potato tissue as an early response to fungal attack. In Active Defense Mechanism in Plants. (R.K.S. Wood, ed.), Plenum Press, New York.

    Google Scholar 

  163. SMITH, T.A., J. NEGREL, C.R. BIRD. 1983. The cinnamic acid amides of the di- and polyamines. In Advances in Polyamine Research. (U. Bachrach, A. Kaye, R. Chayen, eds.), Raven Press, New York, Vol. 4, pp. 347–370.

    Google Scholar 

  164. CABANNE, F., M.A. DALEBROUX, J. MARTIN-TANGUY, C. MARTIN. 1981. Hydroxycinnamic acid amides and ripening to flower of Nicotiana tabacum var. Xanthi nc. Physiol. Plant. 53: 399–404.

    Google Scholar 

  165. BELLIARD, J., J. PERNES, M. SANDMEIER. 1979. Les differentes phases du developpement chez le Mil (Pennisetum typhoides Stapf et Hubbard) et la recherche de marquers. Physiol. Veg. 17: 387–397.

    Google Scholar 

  166. MARTIN-TANGUY, J., J. MARGARA, C. MARTIN. 1984. Phenolamides et induction florale de Cichorium intybus dans differentes conditions de culture en serret et in vitro. Physiol. Plant. 61: 259–262.

    Google Scholar 

  167. CABANNE, F., M. PAYNOT, F. JAVELLE, J. MARTIN-TANGUY, C. MARTIN. 1977. Activite phenylalanine ammoniac lyase et etat floral du Nicotiana tabacum var. Xanthi nc. Physiol. Veg. 15: 445–451.

    Google Scholar 

  168. MARTIN, C., J. MARTIN-TANGUY. 1981. Polyamines conjugees et limitation de l’expansion virale chez les vegetaux. C.R. Seances Acad. Sci. (Paris) 292: 249–251.

    Google Scholar 

  169. DAI, Y., J. WANG. 1987. Relation of polyamine titer to photoperiodic induction of flowering in Pharbitis nil. Plant Sci. (Shannon) 51: 135–139.

    Google Scholar 

  170. VANSUYT, G., C. ZINSOU. 1986. Accumulation of agmatine in chayote (Sechium edule) leaves during development. Physiol. Plant. 67: 592–597.

    Google Scholar 

  171. MARTIN-TANGUY, J., F. CABANNE, E. PEDRIZET, C. MARTIN. 1978. The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17: 1927–1928.

    Google Scholar 

  172. PONCHET, M., J. MARTIN-TANGUY, A. MARAIS, C. MARTIN. 1982. Hydroxycinnamoyl acid amides and aromatic amines in the inflorescence of some Araceae species. Phytochemistry 21: 2865–2869.

    Google Scholar 

  173. MARTIN-TANGUY, J., E. PERDRIZET, J. PREVOST, C. MARTIN. 1982. Hydroxycinnamic acid amides in fertile and cytoplasmic male sterile lines of maize. Phytochemistry 21: 1939–1945.

    Google Scholar 

  174. BIRD, C.R., T.A. SMITH. 1983. Agmatine coumaroyl-transferase from barley seedlings. Phytochemistry 22: 2401–2403.

    Google Scholar 

  175. BERLIN, J., K.H. KNOBLOCH, G. HOFLE, L. WITTE. 1982. Biochemical characterization of two tobacco cell lines with different levels of cinnamoyl putrescine. J. Nat. Prod. 45: 83–87.

    Google Scholar 

  176. FLORES, H.E. 1987. Use of plant cells and organ culture in the production of biological chemicals. In Biotechnology in Agricultural Chemistry. (H.M. LeBaron, R.O. Mumma, R.C. Honeycutt, J.H. Duesing, eds.), American Chemical Society, Washington, D.C., pp. 66–86.

    Google Scholar 

  177. BERLIN, J. 1980. p-Fluorophenylalanine resistant cell lines of tobacco. Z. Pflanzenphysiol. 97: 317–324.

    Google Scholar 

  178. FLORES, H.E., P. FILNER. 1985. Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In Primary and Secondary Metabolism of Plant Cell Cultures. (K.H. Neumann, W. Barz, E. Reinhard, eds.), Springer-Verlag, Berlin, pp. 174–185.

    Google Scholar 

  179. MALMBERG, R.L., J. McINDOO, A.C. HIATT, B.A. LOWE. 1985. Genetics of polyamine synthesis in tobacco: developmental switches in the flower. Cold Spring Harbor Symp. Quant. Biol. 50: 475–482.

    Google Scholar 

  180. HIATT, A.C., R.L. MALMBERG. 1988. Utilization of putrescine in tobacco cell lines resistant to inhibitors of polyamines synthesis. Plant Physiol. 86: 441–446.

    Google Scholar 

  181. TRAN THANH VAN, M. 1973. Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum. Planta 115: 87–92.

    Google Scholar 

  182. TRAN THANH VAN, M. 1977. Regulation of morphogenesis. In Plant Tissue Culture and Its Bio-technological Application. (W. Barz, E. Reinhard, N.H. Zenk, eds.), Springer-Verlag, Berlin, pp. 367–385.

    Google Scholar 

  183. KAUR-SAWHNEY, R., A.F. TIBURCIO, A.W. GALSTON. 1988. Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta 173: 282–284.

    Google Scholar 

  184. TORRIGIANI, P., M.M. ALTAMURA, G. PASQUA, B. MONACELLI, D. SERAFINI-FRACASSINI, N. BAGNI. 1987. Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Physiol. Plant. 70: 453–460.

    Google Scholar 

  185. COSTA, G., N. BAGNI. 1983. Effect of polyamines on fruit set of apples. Hort. Sci. 18: 59–61.

    Google Scholar 

  186. MAPELLI, S., C. FROVA, G. TORNI, G.P. SORESSI. 1978. Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol. 19: 1281–1288.

    Google Scholar 

  187. LEOPOLD, A.C., P.E. KRIEDEMANN. 1975. Plant Growth and Development. McGraw-Hill, Inc., New York, 545 pp.

    Google Scholar 

  188. HEIMER, Y.M., Y. MIZRAHI. 1982. Characterization of ornithine decarboxylase of tobacco cells and tomato ovaries. Biochem. J. 201: 373–376.

    Google Scholar 

  189. MIZRAHI, Y., Y.M. HEIMER. 1982. Increased activity of ornithine decarboxylase in tomato ovaries induced by auxin. Physiol. Plant. 54: 367–368.

    Google Scholar 

  190. COHEN, E., S. ARAD, Y.M. HEIMER, Y. MIZRAHI. 1982. Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol. 70: 540–543.

    Google Scholar 

  191. SLOCUM, R.D., A.W. GALSTON. 1985. In vivo inhibition of polyamine biosynthesis and growth in tobacco overy tissues. Plant Cell Physiol. 26: 1519–1526.

    Google Scholar 

  192. APELBAUM, A. 1986. Polyamine involvement in the development and ripening of avocado fruit. Acta Hortic. 179: 779–785.

    Google Scholar 

  193. TOUMADJE, A., D.G. RICHARDSON. 1988. Endogenous polyamine concentrations during development, storage and ripening of pear fruits. Phytochemistry 27: 335–338.

    Google Scholar 

  194. NATHAN, R., A. ALTMAN, S.P. MONSELISE. 1984. Changes in activity of polyamine biosynthetic enzymes and in polyamine contents in developing fruit tissues of ‘Murcott’ mandarin. Sci. Hortic. 22: 359–364.

    Google Scholar 

  195. SALISBURY, F.B., C.W. ROSS. 1985. Plant Physiology. Wadsworth Publishing Co., Belmont, 348 pp.

    Google Scholar 

  196. THIMANN, K.V. 1980. The senescence of leaves. In Senescence in Plants. (K.V. Thimann, ed.), CRC Press, Boca Raton, pp. 85–115.

    Google Scholar 

  197. ALTMAN, A., R. KAUR-SAWHNEY, A.W. GALSTON. 1977. Stabilization of oat leaf protoplasts through polyamine-mediated inhibition of senescence. Plant Physiol. 60: 570–574.

    Google Scholar 

  198. POPOVIC, R.B., D.J. KYLE, A.S. COHEN, S. ZALIK. 1979. Stabilization of thylakoid membranes by spermine during stress-induced senescence of barley leaf discs. Plant Physiol. 64: 721–726.

    Google Scholar 

  199. SRIVASTAVA, S.K., D.J. VASHI, B.I. NAIK. 1983. Control of senescence by polyamines and guanidines in young and mature barley leaves. Phytochemistry 22: 2115–2154.

    Google Scholar 

  200. CHEN, C.T., C.H. KAO. 1986. Localized effect of 1,3-diaminopropane and benzyladenine on chlorophyll loss in soybean primary leaves. Bot. Bull. Acad. Sin. 27: 97–100.

    Google Scholar 

  201. KAR, R.K., M.A. CHOUDURI. 1986. Effects of light and spermine on senescence of Hydrilla and spinach leaves. Plant Physiol. 80: 1030–1033.

    Google Scholar 

  202. ALTMAN, A. 1982. Retardation of radish leaf senescence by polyamines. Physiol. Plant. 54: 189–193.

    Google Scholar 

  203. MUHITCH, M.J., LA.A EDWARDS, J.S. FLETCHER. 1983. Influence of diamines and polyamines on the senescence of plant suspension cultures. Plant Cell Rep. 2: 82–84.

    Google Scholar 

  204. SUTTLE, J. 1981. Effect of polyamines on ethylene production. Phytochemistry 20: 1477–1480.

    Google Scholar 

  205. KAUR-SAWHNEY, R., A. ALTMAN, A.W. GALSTON. 1978. Dual mechanisms in polyamine mediated control of ribonuclease activity in oat leaf protoplasts. Plant Physiol. 62: 158–160.

    Google Scholar 

  206. TABOR, C.W. 1962. Stabilization of protoplasts and sphreroplasts by spermine and other polyamines. J. Bacteriol. 83: 1101–1111.

    Google Scholar 

  207. ROBERTS, D.R., M.A. WALKER, J.A. THOMPSON, E.B. DUMBROFF. 1983. The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnations. Plant Cell Physiol. 25: 315–322.

    Google Scholar 

  208. DOWNS, C.G., P.H. LOWELL. 1986. The effect of spermidine and putrescine on the senescence of cut carnation. Physiol. Plant. 66: 679–684.

    Google Scholar 

  209. WINER, L., A. APELBAUM. 1986. Involvement of polyamines in the development and ripening of avocado fruits. J. Plant Physiol. 126: 223–233.

    Google Scholar 

  210. TOUMADJE, A., D.G. RICHARDSON. 1984. Inhibition of ethylene production by polyamines in pear discs and intact fruits. Plant Physiol. 75(S): 35.

    Google Scholar 

  211. MOTHES, K., H.R. SCHUTTE, M. LUCKNER, eds. 1985. Biochemistry of Alkaloids. Deutscher Verlag de Wissenschaften, Berlin, 406 pp.

    Google Scholar 

  212. GUGGISBERG, A., M. HESSE. 1983. Putrescine, spermidine, spermine and related polyamine alkaloids. In The Alkaloids: Chemistry and Pharmacology. (A. Brossi, ed.), Academic Press, New York, Vol. XXII, pp. 85–188.

    Google Scholar 

  213. JACOBSON, M., D.G. CROSBY. 1971. Naturally Occurring Insecticides. Marcel Dekker, New York, 573 pp.

    Google Scholar 

  214. WALLER, G.R., E.K. NOVACKI. 1977. Alkaloid Biology and Metabolism in Plants. Plenum Press, New York, 293 pp.

    Google Scholar 

  215. LIEBISCH, H.W., H.R. SCHUTTE. 1985. Alkaloids derived from ornithine. In Biochemistry of Alkaloids. (K. Mothes, H.R. Schutte, M. Luckner, eds.), Deutscher Verlag de Wissenschaften, Berlin, pp. 106–127.

    Google Scholar 

  216. DAWSON, R.F. 1941. The localization of the nicotine biosynthetic mechanism in the tobacco plant. Science 94: 396–397.

    ADS  Google Scholar 

  217. DAWSON, R.F. 1942. Nicotine synthesis in excised tobacco roots. Am. J. Bot. 29: 813–815.

    Google Scholar 

  218. FLORES, H.E., M.W. HOY, J.J. PICKARD. 1987. Secondary metabolites from root cultures. Trends Biotechnol. 5: 64–69.

    Google Scholar 

  219. TIBURCIO, A.F., A.W. GALSTON. 1986. Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25: 107–110.

    Google Scholar 

  220. LEETE, E. 1985. Spermidine: an indirect precursor of the pyrrolidine rings of nicotine and nornicotine in Nicotiana glutinosa. Phytochemistry 24: 957–960.

    Google Scholar 

  221. LEETE, E. 1962. The stereospecific incorporation of ornithine into the tropine moiety of hyoscyamine. J. Am. Chem. Soc. 84: 55.

    Google Scholar 

  222. YAMADA, Y., T. HASHIMOTO. 1988. Biosynthesis of tropane alkaloids. In Application of Plant Cell and Tissue Culture. (G. Bock, J. Marsh, eds.), CIBA Foundation Symposium, John Wiley and Sons, Sussex, pp. 199–212.

    Google Scholar 

  223. HARTMANN, T., H. SANDERS, R. ADOLPH, G. TOPPEL. 1988. Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 175: 82–90.

    Google Scholar 

  224. LUCKNER, M. 1984. Secondary Metabolism in Microorganisms, Plants and Animals. 2nd Edition, Springer-Verlag, 576 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Flores, H.E., Protacio, C.M., Signs, M.W. (1989). Primary and Secondary Metabolism of Polyamines in Plants. In: Poulton, J.E., Romeo, J.T., Conn, E.E. (eds) Plant Nitrogen Metabolism. Recent Advances in Phytochemistry, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0835-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0835-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8106-1

  • Online ISBN: 978-1-4613-0835-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics