Skip to main content

Excited State Absorption of Cr3+ in Low Ligand Field Hosts

  • Chapter
Spectroscopy of Solid-State Laser-Type Materials

Abstract

Excited state absorption (ESA) can exert a major influence in determining the usefulness of a fluorescent material for laser applications. For the specific case of Cr3+, a single configurational coordinate model is developed to predict the ESA consequences of a 4T2g (low ligand field) or (high ligand field) lowest excited state. Pulse-probe ESA measurements are conducted for Cr3+ in a fluoride elpasolite (K2NaScF6) and in two oxide garnets (GSGG and GSAG) to test the predictions for the low field case. In accordance with the model, two ligand field transitions are located at 7,000 and 19,100 cm-l in the garnets, and an intense charge transfer band is absent in the fluoride and ligand field transition is located near 19,500 cm-l. Saturation experiments are used to determine the ESA cross-sections. A comparison is made with the published ESA spectrum of emerald:Cr3+ (high ligand field) to illustrate the substantial difference between absorption from 2E and 4T2 initial states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. F. Johnson, H. J. Guggenheim, D. Bahnck, and A. M. Johnson, Opt. Letters 8, 371 (1983).

    Article  ADS  Google Scholar 

  2. P. F. Moulton, R. E. Fahey, and W. F. Krupke, “Laser Program Annual Report 82,” Lawrence Livermore Laboratory, p. 7-78.

    Google Scholar 

  3. P. F. Moulton, R. E. Fahey, and W. F. Krupke, “Laser Program Annual Report 83,” Lawrence Livermore Laboratory, p. 6-94.

    Google Scholar 

  4. M. L. Shand and J. C. Walling, IEEE J. Quantum Electronics, QE- 18, 1152 (1982).

    Article  ADS  Google Scholar 

  5. M. L. Shand and H. P. Jenssen, IEEE J. Quantum Electronics, QE- 19, 480 (1983).

    Article  ADS  Google Scholar 

  6. D. S. Hamilton, “Tunable Solid State Lasers,” (Springer-Verlag, Berlin, (1985), p. 80.

    Google Scholar 

  7. A. M. Bonch-Bruevich, T. K. Razumova, and Ya. A. Imas, Optics and Spectroscopy 20, 579 (1966).

    ADS  Google Scholar 

  8. W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, Phys. Rev. B, 11, 60 (1975).

    Article  ADS  Google Scholar 

  9. R. A. Krause, I. Trabjerg, and C. J. Ballhausen, Chem. Phys. Lett. 3, 297 (1969).

    Article  ADS  Google Scholar 

  10. G. Huber and K. Petermann, “Tunable Solid State Lasers,” (Springer-Verlag, Berlin, 1985), p.11.

    Google Scholar 

  11. E. I. Solomon and C. J. Ballhausen, Mol. Physics 29, 279 (1975).

    Article  ADS  Google Scholar 

  12. C. W. F. T. Pistorius, J. Chem. Phys. 29, 1328 (1958).

    Article  ADS  Google Scholar 

  13. K. Nakamoto, “Inrared Spectra of Inorganic and Coordination Compounds,” (John Wiley, New York, 1963), pp. 10-14, 45–46.

    Google Scholar 

  14. P. Greenough and A. G. Paulusz, J. Chem. Phys. 70, 1967 (1979).

    Article  ADS  Google Scholar 

  15. D. S. McClure in “Electronic State of Inorganic Compounds: New Experimental Techniques,” ed. P. Day, D. Reidel, 1975, p. 113.

    Google Scholar 

  16. J. Dolan, U. of Connecticut, private communication.

    Google Scholar 

  17. Unpublished results.

    Google Scholar 

  18. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, Appl. Phys. B 30, 117 (1983).

    Google Scholar 

  19. J. L. Emmett, W. F. Krupke, and W. R. Sooy, “The Potential of High-Average Power Solid State Lasers,” awrence Livermore Laboratory, UCRL-53571 (1984), p. 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrews, L.J., Hitelman, S.M. (1987). Excited State Absorption of Cr3+ in Low Ligand Field Hosts. In: Di Bartolo, B. (eds) Spectroscopy of Solid-State Laser-Type Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0899-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0899-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8235-8

  • Online ISBN: 978-1-4613-0899-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics