Skip to main content

A Review of Duality, String Vertices, Overlap Identities and the Group Theoretic Approach to String Theory

  • Chapter
Particle Physics

Part of the book series: NATO ASI Series ((NSSB,volume 173))

Abstract

There are three approaches to string theory; the way it was discovered which we will call the historical approach1, the sum over world history approach2 and the string field theory approach3,4. Recently, there has been a desire to find a new formulation of string theory which incorporates the strengths of the previous approaches and is both complete and transparent, complete in the sense that it contains the whole of string theory including its perturbative and non-perturbative effects. While the perturbative effects are contained in both the string field theory and sum over world history approaches, only in the latter do the results emerge in an elegant and natural way. Alternatively, only in the former of these approaches is there the hope of computing non-perturbative effects. Since the classical string field equations in the light cone gauge and now in gauge covariant form are known, one could solve these to find classical solutions. In functional form, there is only one equation of motion, but in terms of component fields one has infinitely many equations. This makes finding solutions a formidable but not hopeless task. Given a classical solution one can, in the usual way in a field theory, find the quantum corrections. One good problem to start with is to attempt to shift the vacuum expectation values of the scalar fields to a new minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For some reviews, see: V. Alessandrini, D. Amati, M. LeBellac and D.I. Olive, Physics Reports 1C:170 (1971)

    Google Scholar 

  2. P. Frampton, Dual Resonance Models, Benjamin, Reading (1974)

    Google Scholar 

  3. S. Mandelstam, Strutural Analysis of Collision Amplitudes, Tran Than Van, ed., Les Houches, (June 1975), p. 593

    Google Scholar 

  4. C. Rebbi, Physics Reports 12C:1 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Scherk, Rev. Mod. Phys. 47:123 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  6. J.H. Schwarz, Physics Reports 8C:269 (1973)

    Article  ADS  Google Scholar 

  7. G. Veneziano, Physics Reports, 9C:199 (1974)

    Article  ADS  Google Scholar 

  8. J.H. Schwarz, Physics Reports 89:223 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Green, Surveys of High Energy Physics 3:127 (1983).

    Article  Google Scholar 

  10. C.S. Hsue, B. Sakita and M.A. Virasoro, Phys. Rev. D2:2857 (1970)

    ADS  Google Scholar 

  11. J.-L. Gervais and B. Sakita, Phys. Rev. D4:2291 (1971), Nucl. Phys. B34:477 (1971)

    MathSciNet  ADS  Google Scholar 

  12. S. Mandelstam, Nucl. Phys. B64:205 (1973), B69:77 (1974)

    Article  ADS  Google Scholar 

  13. A.M. Polyakov, Phys. Lett. 103B:207 (1981).

    MathSciNet  ADS  Google Scholar 

  14. M. Kaku and K. Kikhawa, Phys. Rev. D10:1110, 1823 (1974)

    Google Scholar 

  15. M. Kaku, Phys. Rev. D10:3943 (1974).

    MathSciNet  ADS  Google Scholar 

  16. For a review of gauge covariant string field theory, see: P. West, Gauge Covariant String Field Theory, in: “Supersymmetry, Supergravity and Superstrings ‘86“, B. de Wit, P. Fayet and M. Grisaru, eds., World Scientific, (1986) and references therein.

    Google Scholar 

  17. E.S. Fradkin and A.A. Tseytlin, Phys. Lett. 158B:316 (1985)

    MathSciNet  ADS  Google Scholar 

  18. A.A. Tseytlin, Phys. Lett. 168B:63 (1986).

    MathSciNet  ADS  Google Scholar 

  19. T. Yoneya, in Proceedings of the Seventh Workshop on “Gr and Unification”, D. Friedan, ed., Toyama, Japan, Phys. Lett. 162B:102 (1985)

    Google Scholar 

  20. H. Hata, K. Itoh, T. Kugo, H. Kunitomo and K. Ogawa, Phys. Lett. 175B: 138 (1986)

    MathSciNet  ADS  Google Scholar 

  21. G.T. Horowitz, J. Lykken, R. Rohm and A. Strominger, Phys. Rev. Lett. 57:283 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Strominger, Phys. Rev. Lett. 58:629 (1987); Phys. Lett. B187:295 (1987) and IAS preprint HEP-87/6 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  23. Z. Koba and H.B. Nielsen, Nucl. Phys. B10:633 (1969).

    Article  ADS  Google Scholar 

  24. D. Friedan and S. Shenker, Phys. Lett. 175B:287 (1986); Nucl. Phys. B281:509 (1987).

    MathSciNet  ADS  Google Scholar 

  25. N. Ishibaski, Y. Matsuo and H. Ooguri, Univ. of Tokyo preprint UT-499 (1986)

    Google Scholar 

  26. L. Alvarez-Gaumé, C. Gomez and C. Reina, Phys. Lett. 190B:55 (1987) and CERN preprint TH.4775/87 (1987)

    ADS  Google Scholar 

  27. E. Witten, “Conformai Field Theory Grassmannians and Algebraic Curves”, Princeton preprint (1987).

    Google Scholar 

  28. M. Bowick and B. Rajeev, Phys. Rev. Lett. 58:535 (1987), MIT preprint CTP 1450/87 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Neveu and P. West, Phys. Lett. 193B:187 (1987).

    MathSciNet  ADS  Google Scholar 

  30. A. Neveu and P. West, Phys. Lett. 194B (1987) 200.

    MathSciNet  ADS  Google Scholar 

  31. A. Neveu and P. West, “Group Theoretic Approach to the Open Bosonic String Multi-Loop S matrix”, CERN preprint TH.4757/87 (1987), to be published in Communications in Mathematical Physics.

    Google Scholar 

  32. For a review, see P. West, “Supersymmetry and Finiteness”, R. Jackiw, N. Khuri, S. Weinberg and E. Witten, eds., MIT Press, Shelter Island (1983).

    Google Scholar 

  33. A. Neveu, H. Nicolai, and P. West, Phys. Lett. 168B:192 (1986).

    MathSciNet  ADS  Google Scholar 

  34. E. Witten, Nucl. Phys. B268:23 (1986).

    Google Scholar 

  35. A. Neveu and P. West, Phys. Lett. 168B:192 (1985); Nucl. Phys. B278:601 (1980).

    MathSciNet  ADS  Google Scholar 

  36. H. Hata, K. Itoh, H. Kunitomo and K. Ogawa, Phys. Lett. 172B:186 (1986); Phys. Rev. D34:2369 (1986).

    MathSciNet  ADS  Google Scholar 

  37. A. Neveu and P. West, Phys. Lett. 182B:343 (1986).

    MathSciNet  ADS  Google Scholar 

  38. A. Neveu and P. West, Nucl. Phys. B293: 266 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  39. W. Siegel and B. Zwieback, Gauge String fields from the Light-Cone, Maryland preprint 86–195 (1986).

    Google Scholar 

  40. G. Veneziano, Nuov. Cim. 57A:190 (1968).

    Article  ADS  Google Scholar 

  41. K. Bardakci and H. Ruegg, Phys. Lett. 28B:342 (1968)

    ADS  Google Scholar 

  42. M.A. Virasoro, Phys. Rev. Lett. 22:37 (1969)

    Article  ADS  Google Scholar 

  43. K. Bardakci and H. Ruegg, Phys. Rev. 181:1884 (1969)

    Article  ADS  Google Scholar 

  44. H.M. Chan and S.T. Tsou, Phys. Lett. 28B:485 (1969)

    ADS  Google Scholar 

  45. C.G. Goebel and B. Sakita, Phys. Rev. Lett. 22:257 (1969)

    Article  ADS  Google Scholar 

  46. Z. Koba and H.B. Nielsen, Nucl. Phys. B10:633 (1969).

    Article  ADS  Google Scholar 

  47. R. Dolan, D. Horn and C. Schmid, Phys. Rev. Lett. 19:402 (1967), Phys. Rev. 166:1768 (1968).

    Article  ADS  Google Scholar 

  48. M. Ademollo, H.R. Rubinstein, G. Veneziano and M.A. Virasoro, Phys. Rev. Lett. 14:1402 (1967); Phys. Lett. 27B:99 (1968); Phys. Rev. 176:1904 (1968)

    Article  ADS  Google Scholar 

  49. S. Mandelstam, Phys. Rev. 166:1539 (1968)

    Article  ADS  Google Scholar 

  50. C. Schmid, Phys. Rev. Lett. 20:628 (1968)

    Article  ADS  Google Scholar 

  51. C. Schmid and J. Yellin, Phys. Lett. 27B:19 (1968); Phys. Rev. 182:1449 (1969).

    ADS  Google Scholar 

  52. J. Eden, P. Landshoff, D. Olive and J. Polkinghorn, Analytic S Matrix, published by CUP and references therein.

    Google Scholar 

  53. S. Fubini and G. Veneziano, Nuov. Cim. 64A:811 (1969)

    Article  ADS  Google Scholar 

  54. S. Fubini, D. Gordon and G. Veneziano, Phys. Lett. 29B:679 (1969)

    ADS  Google Scholar 

  55. S. Fubini and G. Veneziano, Nuov. Cim. 67A:29 (1970)

    Article  ADS  Google Scholar 

  56. S. Fubini and G. Veneziano, Ann. Phys. 63:12 (1971)

    Article  ADS  Google Scholar 

  57. K. Bardakci and S. Mandelstam, Phys. Rev. 184:1640 (1969).

    Article  ADS  Google Scholar 

  58. Y. Nambu, in: “Symmetries and Quark Models”, R. Chan, ed., Gordon Breach (1970)

    Google Scholar 

  59. L. Susskind, Phys. Rev. D1:1182 (1970)

    ADS  Google Scholar 

  60. H.B. Nielsen, An Almost Physical Interpretation of the Dual N Point Function, Nordita report, unpublished (1969)

    Google Scholar 

  61. H.B. Nielsen, in Proc. 15th International Conference on High Energy Physics, Kiev (1970).

    Google Scholar 

  62. F. Gliozzi, Nuov. Cim. 2:846 (1969).

    Google Scholar 

  63. E. Del Giudice and P. Di Vecchia, Nuov. Cim. 5A:90 (1971).

    Article  ADS  Google Scholar 

  64. R.C. Brower, Phys. Rev. D6:1655 (1972)

    ADS  Google Scholar 

  65. P. Goddard and C. Thorn, Phys. Lett. 40B:235 (1972)

    ADS  Google Scholar 

  66. C. Thorn, Nucl. Phys. B286:61 (1987).

    MathSciNet  ADS  Google Scholar 

  67. M. Virasoro, Phys. Rev. D1:2933 (1970).

    ADS  Google Scholar 

  68. J. Weis, unpublished.

    Google Scholar 

  69. S. Sciuto, Nuov. Cim. 2:411 (1969).

    Google Scholar 

  70. S. Mandelstam, Brandeis Lectures.

    Google Scholar 

  71. L. Caneschi, A. Schwimmer and G. Veneziano, Phys. Lett 30B:351 (1969).

    ADS  Google Scholar 

  72. L. Brink and D. Olive, Nucl. Phys. B58:237 (1973) and B56:256 (1970).

    Article  ADS  Google Scholar 

  73. E. Cremmer and J.-L. Gervais, Nucl. Phys. B76:209 (1974); B90:410 (1975).

    Article  ADS  Google Scholar 

  74. T. Gotto and S. Waka, Prog. Theor. Phys. 51:299 (1974).

    Article  ADS  Google Scholar 

  75. J.F.L. Hopkinson, R.W. Tucker and P.A. Collins, Phys. Rev. D12:1653 (1975)

    MathSciNet  ADS  Google Scholar 

  76. M. Green and J. Schwarz, Nucl. Phys. B218:43 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  77. S. Mandelstam, Nucl. Phys. B64:205 (1973); B69:77 (1974).

    Article  ADS  Google Scholar 

  78. A. Neveu and P. West, Phys. Lett. 179B:235 (1986).

    MathSciNet  ADS  Google Scholar 

  79. A. Neveu and P. West, Phys. Lett. 180B:34 (1986).

    MathSciNet  ADS  Google Scholar 

  80. P. West, Dual Model and Gauge Covariant Vertices, to appear in the Proceedings of British Summer Institute, I. Halliday, ed., published by A. Hilger (1986).

    Google Scholar 

  81. C. Lovelace, Phys. Lett. 32B:496 (1970).

    ADS  Google Scholar 

  82. D. Olive, Nuov. Cim. 3A:399 (1971).

    Article  ADS  Google Scholar 

  83. “Higher Transcendental Functions”, Bateman manuscript project, A. Erdelyi, ed., McGraw Hill, New York (1953).

    Google Scholar 

  84. D.J. Gross and J.H. Schwarz, Nucl. Phys. B23:333 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  85. E. Cremmer, Nucl. Phys. B31:477 (19171).

    Google Scholar 

  86. C. Lovelace, Phys. Lett. 34B:500 (1971).

    ADS  Google Scholar 

  87. C. Callan, C. Lovelace, C. Nappi and S.A. Yost, Princeton preprint PUPT (1987).

    Google Scholar 

  88. B. Grinstein and M.B. Wise, Caltech preprint CALT-68-1375 (1986)

    Google Scholar 

  89. M.R. Douglas and B. Grinstein, Caltech preprint CALT-68-1379 (1986)

    Google Scholar 

  90. S. Weinberg, Univ. of Texas preprint UTTG-01-87 (1987).

    Google Scholar 

  91. W. Fischler and L. Susskind, Univ. of Texas preprint UTTG-37-85 (1985) and UTTG-03-86 (1986).

    Google Scholar 

  92. A.A. Beilinson, Ya.I. Manin and V.A. Schechtman, Localization of the Virasoro and Neveu-Schwarz Algebras, preprint (1986).

    Google Scholar 

  93. I thank L. Alvarez-Gaumé and C. Gomez for this piece of information.

    Google Scholar 

  94. P. Di Vecchia, R. Nakayama, J.L. Petersen, J. Sidenius and S. Sciuto, Nordita preprint 86/15 (1986) and others.

    Google Scholar 

  95. C. Lovelace, Phys. Lett. B32:703 (1970)

    MathSciNet  ADS  Google Scholar 

  96. V. Alessandrini, Nuovo Cimento 2A:321 (1971).

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

West, P. (1988). A Review of Duality, String Vertices, Overlap Identities and the Group Theoretic Approach to String Theory. In: Lévy, M., Basdevant, JL., Jacob, M., Speiser, D., Weyers, J., Gastmans, R. (eds) Particle Physics. NATO ASI Series, vol 173. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0977-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0977-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8274-7

  • Online ISBN: 978-1-4613-0977-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics