Skip to main content

Resonance Collisions of Electrons with Molecules and in Solids

  • Chapter
Electron-Molecule Scattering and Photoionization

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The resonance model describes an enhancement of the amplitude of an electron at a collision target, and usually also an increase in the collision time. The importance of the model comes from the reactions made possible by these two effects, reactions which often could not occur in direct collisions.

The resonance model became established in the years 1960–1980, mainly because of its ability to explain vibrational excitation in molecules. In recent years, it has been successfully tested on collisions involving the excitation of very large numbers of vibrational quanta.

The model is still controversial in its application to threshold peaks like those observed in HCl, where the basic mechanism of the amplitude enhancement is not generally agreed. Nevertheless, successful accounts have been given of vibrational excitation and dissociative attachment in HCl near threshold.

Some of the most exciting developments on resonance collisions are happening in solid state physics. Experiments on electron collisions with molecules adsorbed on solid surfaces show vibrational excitation which resembles what we see with the same molecules in the gas phase, yet with intriguing differences which can be traced to the effect of the surface on the trapping barrier.

Resonance collisions of the valence electrons within a metal with the lattice of positive ions are particularly important in the rare earth elements, which have vacant inner atomic f-orbitals very close to the Fermi surface. Like the shape resonances of electrons in small molecules, these resonances are accompanied by a strong coupling between electrons and vibrations. Through this coupling, the resonances in rare-earth atoms seem to lead to an important contribution to acoustic attenuation, whose physical character is quite different from the traditional direct mechanism due to Pippard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. See e.g. Sir H.S.W. Massey, ‘Negative Ions’, 3rd edn., Cambridge Univ. Press, 1976, p.97–101.

    Google Scholar 

  2. G. Gamow, Z. Phys., 51, 204, 1928.

    Article  ADS  Google Scholar 

  3. N. Bohr, Nature, 137, 351, 1936.

    Article  ADS  Google Scholar 

  4. H.Feshbach, Ann.Phys.(N.Y.), 5, 357, 1958; 19, 287, 1962.

    Google Scholar 

  5. A. Herzenberg and E. Stryjewski, Phys.Rev.A, 15, 234, 1977.

    Article  ADS  Google Scholar 

  6. See e.g. J.R.Taylor, ‘Scattering Theory’, Wiley, New York, 1972; J.M. Blatt and V.F.Weisskopf, ‘Theoretical Nuclear Physics’, Wiley, New York, 1952, ch.2, p.68.

    Google Scholar 

  7. G.J. Schulz, Rev.Mod.Phys., 45, 423, 1973.

    Article  ADS  Google Scholar 

  8. N.F. Lane, Rev.Mod.Phys., 52, 29, 1980.

    Article  ADS  Google Scholar 

  9. D.G. Thompson, Adv.Atomic and Molecular Physics, 19, 309, 1983.

    Article  Google Scholar 

  10. Z.M. Pavlovic, J.W. Boness, A. Herzenberg, and G.J. Schulz, Phys.Rev.A, 6, 676, 1972.

    Article  ADS  Google Scholar 

  11. J.L. Dehmer and D. Dill, reviewed in ‘Symposium on Electron-Molecule Collisions’, edited by I.Shimamura and M.Matsuzawa, University of Tokyo, 1979.

    Google Scholar 

  12. J. Macek and S. Watanabe, Comm.Atomic and Molecular Physics, 19, 313, 1987.

    Google Scholar 

  13. G. J. Schulz, Phys.Rev. 125, 229, 1962; 135, A 988, 1964.

    Google Scholar 

  14. A.U. Hazi, T. Rescigno, and M. Kurilla, Phys.Rev.A, 23, 1089, 1981.

    Article  ADS  Google Scholar 

  15. M.A. Morrison, Aust.J.of Physics, 36, 239, 1983.

    ADS  Google Scholar 

  16. D.T. Birtwistle and A. Herzenberg, J.Phys.B At.and Mol.Phys., 4, 53, 1971.

    Article  ADS  Google Scholar 

  17. L. Dubé and A. Herzenberg, Phys.Rev. A, 20, 194, 1979.

    Article  ADS  Google Scholar 

  18. P.L. Kapur and R.E. Peierls, Proc.Roy.Soc., Ser.A 166, 277, 1938.

    Article  ADS  Google Scholar 

  19. J.N. Bardsley, J.Phys.B, 1, 349, 1968.

    Article  ADS  Google Scholar 

  20. M. Berman, H. Estrada, L.S. Cederbaum, and W. Domcke, Phys.Rev.A 28, 1363, 1983.

    Article  ADS  Google Scholar 

  21. M. Allan, J.Pliys.B At.Mol.Phys., 18, 4511, 1985.

    Article  ADS  Google Scholar 

  22. L.A. Morgan, J.Phys.B, 19, L439, 1986.

    Article  ADS  Google Scholar 

  23. B.I. Schneider, M. LeDourneuf, and P.G. Burke, J.Phys.B At.Mol.Phys., 12, L365, 1979.

    Article  Google Scholar 

  24. H. Ehrhardt, L. Langhans, F. Linder, and H.S. Taylor, Phys.Rev. 173, 222, 1968

    Article  ADS  Google Scholar 

  25. R.A. Abram and A. Herzenberg, Chem.Phys.Lett., 3, 187, 1969.

    Article  ADS  Google Scholar 

  26. M. Allan and S.F. Wong, Phys.Rev.Lett., 41, 1791, 1978.

    Article  ADS  Google Scholar 

  27. R.K. Nesbet, Comments At.Mol.Phys., 11, 25, 1981.

    Google Scholar 

  28. C. Mündel, M. Berman, and W. Domcke, Phys.Rev.A, 32, 181, 1985.

    Article  ADS  Google Scholar 

  29. J.M. Wadehra and J.N. Bardsley, Phys.Rev.Lett., 41, 1795, 1978; J.N. Bardsley and J.M. Wadehra, Phys.Rev.A, 20, 1398, 1979;. J.M. Wadehra, Phys.Rev.A, 29, 106, 1984.

    Google Scholar 

  30. Yu.N. Demkov, Sov.Phys.JETP, 19, 762, 1964.

    Google Scholar 

  31. A.Z. Devdariani, Sov.Phys.-Tech.Phys., 18, 255, 1973.

    ADS  Google Scholar 

  32. L. Dubé and A. Herzenberg, Phys.Rev.Lett., 38, 820, 1977.

    Article  ADS  Google Scholar 

  33. J.P. Gauyacq, J.Phys.B At.Mol.Phys., 18, 1859, 1985.

    Article  ADS  Google Scholar 

  34. K. Rohr and F. Linder, J.Phys.B, 9, 2521, 1976.

    Article  ADS  Google Scholar 

  35. G. Knoth, M. Rädle, H. Ehrhardt, and K. Jung, to be published.

    Google Scholar 

  36. A. Herzenberg and B.C. Saha, J.Phys.B, At.and Mol. Phys., 16, 591, 1983.

    Article  ADS  Google Scholar 

  37. A. Herzenberg, J.Phys.B, At.and Mol. Phys., 17, 4213, 1984.

    Article  ADS  Google Scholar 

  38. J P. Gauyacq and A. Herzenberg, Phys.Rev.A, 25, 2959, 1982.

    Article  ADS  Google Scholar 

  39. A. Herzenberg, in ‘Electron-Molecule Scattering’, edited by K.Takayanagi and I.Shimamura, Plenum Press, 1964.

    Google Scholar 

  40. M. Allan and S.F. Wong, J.Chem.Phys., 74, 1687, 1981.

    Article  ADS  Google Scholar 

  41. W. Domcke and C. Mündel, J.Phys.B At. and Mol.Phys., 18, 4491, 1985.

    Article  ADS  Google Scholar 

  42. D.W. Norcross and N.T. Padial, Phys.Rev.A, 25, 226, 1982.

    Article  ADS  Google Scholar 

  43. N.T. Padial and D.W. Norcross, Phys.Rev.A, 29, 1590, 1984; 29, 1742, 1984.

    Google Scholar 

  44. D. Teillet-Billy and J.P. Gauyacq, J.Phys.B At. and Mol.Phys., 17, 4041, 1984.

    Article  ADS  Google Scholar 

  45. J.E. Demuth, D. Schmeisser, and Ph. Avouris, Phys.Rev.Lett. 47, 1166, 1981.

    Article  ADS  Google Scholar 

  46. D. Schmeisser, J.E. Demuth, and Ph. Avouris, Phys.Rev.B, 26, 4857, 1982.

    Article  ADS  Google Scholar 

  47. L. Sanche and M. Michaud, Phys.Rev.B, 27, 3856, 1983.

    Article  ADS  Google Scholar 

  48. A. Gerber and A. Herzenberg, Phys.Rev.B, 31, 6219, 1985.

    Article  ADS  Google Scholar 

  49. B.D. Buckley and P.G. Burke, J.Phys.B, 10, 725, 1977.

    Article  ADS  Google Scholar 

  50. N.D. Lang, Phys.Rev.Lett., 46, 842, 1981.

    Article  ADS  Google Scholar 

  51. N.D. Lang and W. Kohn, Phys.Rev.B, 7, 3541, 1973.

    Article  ADS  Google Scholar 

  52. J. Friedel, Can.J.Phys., 34, 1190, 1956; Nuovo Cim.(Suppl.), 7, 287, 1958.

    Google Scholar 

  53. G. Grüner and A. Zawadowski, Rep.Prog.Phys., 37, 1497, 1974. This review deals with isolated resonant (or ‘magnetic’) impurities in ’normal’ metals.

    Google Scholar 

  54. P.A. Lee, P.M. Rice, J.W. Serene, L.J. Sham, and J.W. Wilkins, Comments on Condensed Matter Physics, 12, 99, 1986. This review deals mainly with crystalline materials which have a resonance in each unit cell. There is an introductory section dealing with isolated resonant impurities.

    Google Scholar 

  55. Y. Baer, H.R. Ott, J.C. Fuggle, and L.E. de Long, Phys.Rev.B, 24, 5384, 1981.

    Article  ADS  Google Scholar 

  56. D. Sherrington and S. von Molnar, Solid State Comm., 16, 1347, 1975.

    Article  ADS  Google Scholar 

  57. P. Entel, N. Grewe, M. Seitz, and K. Kowalski, Phys.Rev.Lett. 43, 2002, 1979.

    Article  ADS  Google Scholar 

  58. A.B. Pippard, Phil.Mag., 46, 1104, 1955.

    Google Scholar 

  59. See also A. Schmid, Z.Phys. B, 259, 421, 1973.

    Article  Google Scholar 

  60. V. Müller, D. Maurer, K. de Groot, E. Bucher, and H.E. Bömmel, Phys.Rev.Lett., 56, 248, 1986.

    Article  ADS  Google Scholar 

  61. P.W. Anderson, Phys.Rev., 124, 41, 1961.

    Article  MathSciNet  ADS  Google Scholar 

  62. R. Mock, E. Zirngiebl, B. Hillebrands, G. Güntherodt, and F. Holtzberg, Phys.Rev.Iett., 43, 1998, 1979.

    Google Scholar 

  63. W. Kohn, T.K. Lee, and Y.R. Lin-Liu, Phys.Rev.B, 25, 3557, 1982.

    Article  ADS  Google Scholar 

  64. R.M. Martin, J.B. Boyce, J.W. Allen, and F. Holtzberg, Phys.Rev.Lett., 44, 1275, 1980.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Herzenberg, A. (1988). Resonance Collisions of Electrons with Molecules and in Solids. In: Burke, P.G., West, J.B. (eds) Electron-Molecule Scattering and Photoionization. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1049-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1049-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8309-6

  • Online ISBN: 978-1-4613-1049-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics