Skip to main content

Abstract

The chief functions of mitochondria are to supply the cell with ATP made via oxidative phosphorylation, to regulate the level of reduced pyridine nucleotides in the cytoplasm, to supply the cytoplasm with sufficient carbon precursor for fatty acid and sterol biosyntheses, and to catalyze certain of the reactions involved in gluconeogenesis and ureogenesis. In order for mitochondria to perform these processes, a high-magnitude flux of numerous metabolites must occur across their membranes. Movement of metabolites, as large as 6–8 kDa, occurs across the outer mitochondrial membrane primarily via diffusion through a channel protein known as the voltage-dependent anion channel.1,2 In contrast to the broad specificity of the outer membrane channel, the inner mitochondrial membrane maintains a highly selective permeability resulting from the existence of specific membrane transport proteins. To date, at least 13 major inner membrane metabolite transporters have been identified and extensively characterized (see Table 15.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mannella, C. A., Forte, M., and Colombini, M. (1992). Toward the molecular structure of the mitochondrial channel, VDAC. J. Bioenerg. Biomembr. 24:7–19.

    PubMed  CAS  Google Scholar 

  2. De Pinto, V., and Palmieri, F. (1992). Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). J. Bioenerg. Biomembr. 24:21–26.

    PubMed  Google Scholar 

  3. Chappell, J. B. (1968). Systems used for the transport of substrates into mitochondria. Br. Med. Bull. 24:150–157.

    PubMed  CAS  Google Scholar 

  4. LaNoue, K. F. and Schoolwerth, A. C. (1979). Metabolite transport in mitochondria. Annu. Rev. Biochem. 48:871–922.

    PubMed  CAS  Google Scholar 

  5. Klingenberg, M. (1979). Overview on mitochondrial metabolite transport systems. Methods Enzymol. 56:245–252.

    PubMed  CAS  Google Scholar 

  6. Bryla, J. (1980). Inhibitors of mitochondrial anion transport. Pharmacol. Ther. 10:351–397.

    PubMed  CAS  Google Scholar 

  7. Meijer, A. J., and Van Dam, K. (1981). Mitochondrial ion transport. In Membrane Transport (S. L. Bonting and J. J. H. H. M. de Pont, eds.), Elsevier, Amsterdam, pp. 235–256.

    Google Scholar 

  8. LaNoue, K. F. and Schoolwerth, A. C.. (1984). Metabolite transport in mammalian mitochondria. In Bioenergetics (L. Ernster, ed.), Elsevier, Amsterdam, Volume 9, pp. 221–268.

    Google Scholar 

  9. Schoolwerth, A. C. and LaNoue, K. F. (1985). Transport of metabolic substrates in renal mitochondria. Annu. Rev. Physiol. 47:143–171.

    PubMed  CAS  Google Scholar 

  10. Aquila, H., Link, T. A., and Klingenberg, M. (1987). Solute carriers involved in energy transfer of mitochondria form a homologous protein family. FEBS Lett. 212:1–9.

    PubMed  CAS  Google Scholar 

  11. Kramer, R., and Palmieri, F. (1989). Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochim. Biophys. Acta 974:1–23.

    PubMed  CAS  Google Scholar 

  12. Walker, J. E. (1992). The mitochondrial transporter family. Curr. Opin. Struct. Biol. 2:519–526.

    CAS  Google Scholar 

  13. Kramer, R., and Palmieri, F. (1992). Metabolite carriers in mitochondria. In Molecular Mechanisms in Bioenergetics (L. Ernster, ed.), Elsevier, Amsterdam, pp. 359–384.

    Google Scholar 

  14. Walker, J. E., and Runswick, M. J. (1993). The mitochondrial transport protein superfamily. J. Bioenerg. Biomembr. 25:435–446.

    PubMed  CAS  Google Scholar 

  15. Klingenberg, M. (1989). Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch. Biochem. Biophys. 270:1–14.

    PubMed  CAS  Google Scholar 

  16. Klingenberg, M. (1993). Mitochondrial carrier family: ADP/ATP carrier as a carrier paradigm. In Molecular Biology and Function of Carrier Proteins (L. Reuss, J. M. Russell, Jr., and M. L. Jennings, eds.), The Rockefeller University Press, New York, pp. 201–212.

    Google Scholar 

  17. Pedersen, P. L., and Wehrle, J. P. (1982). Phosphate transport processes of animal cells. In Membranes and Transport (A. N. Martonosi, ed.), New York, Plenum Press, Volume 1, pp. 645–663.

    Google Scholar 

  18. Wohlrab, H. (1986). Molecular aspects of inorganic phosphate transport in mitochondria. Biochim. Biophys. Acta. 853:115–134.

    PubMed  CAS  Google Scholar 

  19. Kaplan, R. S., and Mayor, J. A. (1993). Structure, function and regulation of the tricarboxylate transport protein from rat liver mitochondria. J. Bioenerg. Biomembr. 25:503–514.

    PubMed  CAS  Google Scholar 

  20. Klaus, S., Casteilla, L., Bouillaud, F, and Ricquier, D. (1991). The uncoupling protein UCP: A membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem. 23:791–801.

    PubMed  CAS  Google Scholar 

  21. Ricquier, D., Casteilla, L., and Bouillaud, F. (1991). Molecular studies of the uncoupling protein. FASEB J. 5:2237–2242.

    PubMed  CAS  Google Scholar 

  22. Beavis, A. D. (1992). Properties of the inner membrane anion channel in intact mitochondria. J. Bioenerg. Biomembr. 24:77–90.

    PubMed  CAS  Google Scholar 

  23. Kinnally, K. W., Antonenko, Y. N., and Zorov, D. B. (1992). Modulation of inner mitochondrial membrane channel activity. J. Bioenerg. Biomembr. 24:99–110.

    PubMed  CAS  Google Scholar 

  24. Diwan, J. J. (1987). Mitochondrial transport of K+ and Mg2+. Biochim. Biophys. Acta 895:155–165.

    PubMed  CAS  Google Scholar 

  25. Gunter, T. E., and Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258:C755-C786.

    PubMed  CAS  Google Scholar 

  26. Li, X., Hegazy, M. G., Mahdi, F., Jezek, P., Lane, R. D., and Garlid, K. D. (1990). Purification of a reconstitutively active K+/H+ antiporter from rat liver mitochondria. J. Biol. Chem. 265:15316–15322.

    PubMed  CAS  Google Scholar 

  27. Garlid, K. D., Shariat-Madar, Z., Nath, S., and Jezek, P. (1991). Reconstitution and partial purification of the Na+-selective Na+/H+ antiporter of beef heart mitochondria. J. Biol. Chem. 266:6518–6523.

    PubMed  CAS  Google Scholar 

  28. Li, W., Shariat-Madar, Z., Powers, M., Sun, X., Lane, R. D., and Garlid, K. D. (1992). Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria. J. Biol. Chem. 267:17983–17989.

    PubMed  CAS  Google Scholar 

  29. Paucek, P., Mironova, G., Mahdi, F., Beavis, A. D., Woldegiorgis, G., and Garlid, K. D. (1992). Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J. Biol. Chem. 267: 26062–26069.

    PubMed  CAS  Google Scholar 

  30. Porter, R. K., Scott, J. M., and Brand, M. D. (1992). Choline transport into rat liver mitochondria. Characterization and kinetics of a specific transporter. J. Biol. Chem. 267:14637–14646.

    PubMed  CAS  Google Scholar 

  31. Tahiliani, A. G., and Neely, J. R. (1987). A transport system for coenzyme A in isolated rat heart mitochondria. J. Biol. Chem. 262:11607–11610.

    PubMed  CAS  Google Scholar 

  32. Toninello, A., Via, L. D., Siliprandi, D., and Garlid, K. D. (1992). Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J. Biol. Chem. 267:18393–18397.

    PubMed  CAS  Google Scholar 

  33. Barile, M., Passarella, S., and Quagliariello, E. (1990). Thiamine pyrophosphate uptake into isolated rat liver mitochondria. Arch. Biochem. Biophys. 280:352–357.

    PubMed  CAS  Google Scholar 

  34. Kurosawa, K., Hayashi, N., Sato, N., Kamada, T., and Tagawa, K. (1990). Transport of glutathione across the mitochondrial membranes. Biochem. Biophys. Res. Commun. 167:367–372.

    PubMed  CAS  Google Scholar 

  35. Meijer, A. J., Van Woerkom, G. M., Wanders, R. J. A., and Lof, C. (1982). Transport of N-acetylglutamate in rat-liver mitochondria. Eur. J. Biochem. 124:325–330.

    PubMed  CAS  Google Scholar 

  36. Watkins, L. F., and Lewis, R. A. (1987). The metabolism of deoxyguanosine in mitochondria. Characterization of the uptake process. Mol. Cell. Biochem. 77:71–77.

    PubMed  CAS  Google Scholar 

  37. Thomas, A. P., and Halestrap, A. P. (1981). The role of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes. Biochem. J. 198:551–564.

    PubMed  CAS  Google Scholar 

  38. Rognstad, R. (1983). The role of mitochondrial pyruvate transport in the control of lactate gluconeogenesis. Int. J. Biochem. 15:1417–1421.

    PubMed  CAS  Google Scholar 

  39. Patel, T. B., Barron, L. L., and Olson, M. S. (1984). The stimulation of hepatic gluconeogenesis by acetoacetate precursors. A role for the monocarboxylate translocator. J. Biol Chem. 259:7525–7531.

    PubMed  CAS  Google Scholar 

  40. Martin-Requero, A., Ayuso, M. S., and Parrilla, R. (1986). Ratelimiting steps for hepatic gluconeogenesis. Mechanism of oxamate inhibition of mitochondrial pyruvate metabolism. J. Biol. Chem. 261:13973–13978.

    PubMed  CAS  Google Scholar 

  41. Gellerich, F. N., Bohnensack, R., and Kunz, W. (1983). Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Biochim. Biophys. Acta 722:381–391.

    PubMed  CAS  Google Scholar 

  42. Westerhoff, H. V, Plomp, P. J. A. M., Groen, A. K., Wanders, R. J. A., Bode, J. A., and Van Dam, K. (1987). On the origin of the limited control of mitochondrial respiration by the adenine nucleotide translocator. Arch. Biochem. Biophys. 257:154–169.

    PubMed  CAS  Google Scholar 

  43. Bohnensack, R., Gellerich, F. N., Schild, L., and Kunz, W. (1990). The function of the adenine nucleotide translocator in the control of oxidative phosphorylation. Biochim. Biophys. Acta 1018:182–184.

    PubMed  CAS  Google Scholar 

  44. Simpson, D. P. (1975). Glutamine transport in dog kidney mitochondria. A new control mechanism in acidosis. Med. Clin. North Am. 59:555–567.

    PubMed  CAS  Google Scholar 

  45. Lenzen, C., Soboll, S., Sies, H., and Haussinger, D. (1987). pH control of hepatic glutamine degradation. Role of transport. Eur. J. Biochem. 166:483–488.

    PubMed  CAS  Google Scholar 

  46. Hutson, S. M., and Hall, T. R. (1993). Identification of the mitochondrial branched chain aminotransferase as a branched α-keto acid transport protein. J. Biol. Chem. 268:3084–3091.

    PubMed  CAS  Google Scholar 

  47. Nosek, M. T., and Aprille, J. R. (1992). ATP-Mg/P carrier activity in rat liver mitochondria. Arch. Biochem. Biophys. 296:691–697.

    PubMed  CAS  Google Scholar 

  48. Hagen, T., Joyal, J. L., Henke, W., and Aprille, J. R. (1993). Net adenine nucleotide transport in rat kidney mitochondria. Arch. Biochem. Biophys. 303:195–207.

    PubMed  CAS  Google Scholar 

  49. Claeys, D., and Azzi, A. (1989). Tricarboxylate carrier of bovine liver mitochondria. Purification and reconstitution. J. Biol. Chem. 264:14627–14630.

    PubMed  CAS  Google Scholar 

  50. Glerum, D. M., Claeys, D., Mertens, W., and Azzi, A. (1990). The tricarboxylate carrier from rat liver mitochondria. Purification, reconstitution and kinetic characterization. Eur. J. Biochem. 194:681–684.

    PubMed  CAS  Google Scholar 

  51. Kaplan, R. S., Mayor, J. A., Johnston, N., and Oliveira, D. L. (1990). Purification and characterization of the reconstitutively active tricarboxylate transporter from rat liver mitochondria. J. Biol. Chem. 265:13379–13385.

    PubMed  CAS  Google Scholar 

  52. Bisaccia, F., De Palma, A., and Palmieri, F. (1989). Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 977:171–176.

    PubMed  CAS  Google Scholar 

  53. Azzi, A., Glerum, M., Koller, R., Mertens, W., and Spycher, S. (1993). The mitochondrial tricarboxylate carrier. J. Bioenerg. Biomembr. 25:515–524.

    PubMed  CAS  Google Scholar 

  54. Kaplan, R. S., Mayor, J. A., and Wood, D. O. (1993). The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J. Biol. Chem. 268:13682–13690.

    PubMed  CAS  Google Scholar 

  55. Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J. W., and Bustamente, E. (1978). Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol. 20:411–481.

    PubMed  CAS  Google Scholar 

  56. Aquila, H., Misra, D., Eulitz, M., and Klingenberg, M. (1982). Complete amino acid sequence of the ADP/ATP carrier from beef heart mitochondria. Hoppe-Seyler’s Z. Physiol. Chem. 363:345–349.

    CAS  Google Scholar 

  57. Kolbe, H. V. J., and Wohlrab, H. (1985). Sequence of the N-terminal formic acid fragment and location of the N-ethylmaleimidebinding site of the phosphate transport protein from beef heart mitochondria. J. Biol. Chem. 260:15899–15906.

    PubMed  CAS  Google Scholar 

  58. Walker, J. E., Fearnley, I. M., and Blows, R. A. (1986). A rapid solid-phase protein microsequencer. Biochem. J. 237:73–84.

    PubMed  CAS  Google Scholar 

  59. Runswick, M. J., Powell, S. J., Nyren, P., and Walker, J. E. (1987). Sequence of the bovine mitochondrial phosphate carrier protein: Structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 6:1367–1373.

    PubMed  CAS  Google Scholar 

  60. Ferriera, G. C, Pratt, R. D., and Pedersen, P. L. (1989). Energy linked anion transport. Cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J. Biol. Chem. 264:15628–15633.

    Google Scholar 

  61. Runswick, M. J., Walker, J. E., Bisaccia, F., Iacobazzi, V., and Palmieri, F. (1990). Sequence of the bovine 2-oxoglutarate/malate carrier protein: Structural relationship to other mitochondrial transport proteins. Biochemistry 29:11033–11040.

    PubMed  CAS  Google Scholar 

  62. Aquila, H., Link, T. A., and Klingenberg, M. (1985). The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. EMBO J. 4:2369–2376.

    PubMed  CAS  Google Scholar 

  63. Nelson, D. R., Lawson, J. E., Klingenberg, M., and Douglas, M. G. (1993). Site-directed mutagenesis of the yeast mitochondrial ADP/ATP translocator. Six arginines and one lysine are essential. J. Mol. Biol. 230:1159–1170.

    PubMed  CAS  Google Scholar 

  64. Shinohara, Y., Kamida, M., Yamazaki, N., and Terada, H. (1993). Isolation and characterization of cDNA clones and a genomic clone encoding rat mitochondrial adenine nucleotide translocator. Biochim. Biophys. Acta 1152:192–196.

    PubMed  CAS  Google Scholar 

  65. Neckelmann, N., Li, K., Wade, R. P., Shuster, R., and Wallace, D. C. (1987). cDNA sequence of a human skeletal muscle ADP/ATP translocator: Lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc. Natl. Acad. Sci. USA 84: 7580–7584.

    PubMed  CAS  Google Scholar 

  66. Powell, S. J., Medd, S. M., Runswick, M. J., and Walker, J. E. (1989). Two bovine genes for mitochondrial ADP/ATP translocase expressed differently in various tissues. Biochemistry 28:866–873.

    PubMed  CAS  Google Scholar 

  67. Cozens, A. L., Runswick, M. J., and Walker, J. E. (1989). DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J. Mol. Biol. 206:261–280.

    PubMed  CAS  Google Scholar 

  68. Bouillaud, F., Weissenbach, J., and Ricquier, D. (1986). Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein. J. Biol. Chem. 261:1487–1490.

    PubMed  CAS  Google Scholar 

  69. Ridley, R. G., Patel, H. V., Gerber, G. E., Morton, R. C, and Freeman, K. B. (1986). Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of fat brown adipose tissue: Lack of a mitochondrial targeting presequence. Nucleic Acids Res. 14:4025–4035.

    PubMed  CAS  Google Scholar 

  70. Saraste, M., and Walker, J. E. (1982). Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 144:250–254.

    PubMed  CAS  Google Scholar 

  71. Colleaux, L., Richard, G.-F, Thierry, A., and Dujon, B. (1992). Sequence of a segment of yeast chromosome XI identifies a new mitochondrial carrier, a new member of the G protein family, and a protein with the PAAKK motif of the HI histones. Yeast 8:325–336.

    PubMed  CAS  Google Scholar 

  72. Weisenberger, G., Link, T. A., Von Ahsen, U., Waldherr, M., and Schweyen, R. J. (1991). MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family. J. Mol. Biol. 217:23–37.

    Google Scholar 

  73. Waterston, R., Martin, C, Craxton, M., Huynh, C, Coulson, A., Hillier, L., Durbin, R., Green, P., Skownkeen, R., Halloran, N., Metzstein, M., Hawkins, T., Wilson, R., Berks, M., Du, Z., Thomas, K., Thierry-Mieg, J., and Sulston, J. (1992). A survey of expressed genes in Caenorhabditis elegans. Nature Genet. 1:114–123.

    PubMed  CAS  Google Scholar 

  74. Zarrilli, R., Oates, E. L., McBride, O. W., Lerman, M. I., Chan, J. Y, Santisteban, P., Ursini, M. V., Notkins, A. L., and Kohn, L. D. (1989). Sequence and chromosomal assignment of a novel cDNA identified by immunoscreening of a thyroid expression library: Similarity to a family of mitochondrial solute carrier proteins. Mol Endocrinol 3: 1498–1508.

    PubMed  CAS  Google Scholar 

  75. Fiermonte, G., Runswick, M. J., Walker, J. E., and Palmieri, F. (1992). Sequence and pattern of expression of a bovine homologue of a human mitochondrial transport protein associated with Grave’s disease. DNA Sequence 3:71–78.

    PubMed  CAS  Google Scholar 

  76. Williams, K. R., and Herrick, G. (1991). Expression of the gene encoded by a family of macronuclear chromosomes generated by alternative DNA processing in Oxytricha fallax. Nucleic Acids Res. 19:4717–4724.

    PubMed  CAS  Google Scholar 

  77. Capobianco, L., Bisaccia, F., Michel, A., Sluse, F. E., and Palmieri, F. (1995). The N- and C-termini of the tricarboxylate carrier are exposed to the cytoplasmic side of the inner mitochondrial membrane. FEBS Lett. 357:297–300.

    PubMed  CAS  Google Scholar 

  78. Ferreira, G. C, Pratt, R. D., and Pedersen, P. L. (1990). Mitochondrial proton/phosphate transporter. An antibody directed against the COOH terminus and proteolytic cleavage experiments provides new insights about its membrane topology. J. Biol. Chem. 265:21202–21206.

    PubMed  CAS  Google Scholar 

  79. Capobianco, L., Brandolin, G., and Palmieri, F. (1991). Transmembrane topography of the mitochondrial phosphate carrier explored by peptide-specific antibodies and enzymatic digestion. Biochemistry 30:4963–4969.

    PubMed  CAS  Google Scholar 

  80. Palmieri, F., Bisaccia, F, Capobianco, L., Dolce, V., Iacobazzi, V., Indiveri, C, and Zara, V. (1992). Structural and functional properties of two mitochondrial transport proteins: The phosphate carrier and the oxoglutarate carrier. In Molecular Mechanisms of Transport (E. Quagliariello and F. Palmieri, eds.), Elsevier, Amsterdam, pp.151–158.

    Google Scholar 

  81. Brandolin, G., Boulay, F., Dalbon, P., and Vignais, P. V. (1989). Orientation of the N-terminal region of the membrane-bound ADP/ATP carrier protein explored by antipeptide antibodies and an arginine-specific endoprotease. Evidence that the accessibility of the N-terminal residues depends on the conformational state of the carrier. Biochemistry 28:1093–1100.

    PubMed  CAS  Google Scholar 

  82. Marty, I., Brandolin, G., Gagnon, J., Brasseur, R., and Vignais, P. V (1992). Topography of the membrane-bound ADP/ATP carrier assessed by enzymatic proteolysis. Biochemistry 31:4058–4065.

    PubMed  CAS  Google Scholar 

  83. Bisaccia, F., Capobianco, L., Brandolin, G., and Palmieri, F. (1994). Transmembrane topography of the mitochondrial oxoglutarate carrier assessed by peptide-specific antibodies and enzymatic cleavage. Biochemistry 33:3705–3713.

    PubMed  CAS  Google Scholar 

  84. Eckerskorn, C, and Klingenberg, M. (1987). In the uncoupling protein from brown adipose tissue the C-terminus protrudes to the c-side of the membrane as shown by tryptic cleavage. FEBS Lett. 226:166–170.

    PubMed  CAS  Google Scholar 

  85. Klingenberg, M., and Appel, M. (1989). The uncoupling protein dimer can form a disulfide cross-link between the mobile C-terminal SH groups. Eur. J. Biochem. 180:123–131.

    PubMed  CAS  Google Scholar 

  86. Miroux, B., Frossard, V, Raimbault, S., Ricquier, D., and Bouillaud, F. (1993). The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J. 12:3739–3745.

    PubMed  CAS  Google Scholar 

  87. Miroux, B., Casteilla, L., Klaus, S., Raimbault, S., Grandin, S., Clement, J. M., Ricquier, D., and Bouillaud, F (1992). Antibodies selected from whole antiserum by fusion proteins as tools for the study of the topology of mitochondrial membrane proteins. Evidence that the N-terminal extremity of the sixth α-helix of the uncoupling protein is facing the matrix. J. Biol. Chem. 267:13603–13609.

    PubMed  CAS  Google Scholar 

  88. Maloney, P. C. (1990). A consensus structure for membrane transport. Res. Microbiol. 141:374–383.

    PubMed  CAS  Google Scholar 

  89. Griffith, J. K., Baker, M. E., Rouch, D. A., Page, M. G. P., Skurray, R. A., Paulsen, I. T., Chater, K. F., Baldwin, S. A., and Henderson, P. J. F. (1992). Membrane transport proteins: Implications of sequence comparisons. Curr. Opin. Cell Biol. 4:684–695.

    PubMed  CAS  Google Scholar 

  90. Lin, C.-S., and Klingenberg, M. (1982). Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry 21:2950–2956.

    PubMed  CAS  Google Scholar 

  91. Lin, C. S., Hackenberg, H., and Klingenberg, M. (1980). The uncoupling protein from brown adipose tissue mitochondria is a dimer. A hydrodynamic study. FEBS Lett. 113:304–306.

    PubMed  CAS  Google Scholar 

  92. Hackenberg, H., and Klingenberg, M. (1980). Molecular weight and hydrodynamic parameters of the adenosine 5′-diphosphate-adenosine 5′-triphosphate carrier in Triton X-100. Biochemistry 19:548–555.

    PubMed  CAS  Google Scholar 

  93. Klingenberg, M., Hackenberg, H., Eisenreich, G., and Mayer, I. (1979). The interaction of detergents with the ADP,ATP carrier from mitochondria. In Function and Molecular Aspects of Biomembrane Transport (E. Quagliariello, F. Palmieri, S. Papa, and M. Klingenberg, eds.), Elsevier, Amsterdam, pp. 291–303.

    Google Scholar 

  94. Riccio, P., Aquila, H., and Klingenberg, M. (1975). Purification of the carboxy-atractylate binding protein from mitochondria. FEBS Lett. 56:133–138.

    PubMed  CAS  Google Scholar 

  95. Klingenberg, M., Riccio, P., and Aquila, H. (1978). Isolation of the ADP,ATP carrier as the carboxyatractylate-protein complex from mitochondria. Biochim. Biophys. Acta 503:193–210.

    PubMed  CAS  Google Scholar 

  96. Dierks, T., Riemer, E., and Kramer, R. (1988). Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. Biochim. Biophys. Acta 943:231–244.

    PubMed  CAS  Google Scholar 

  97. Indiveri, C, Prezioso, G., Dierks, T., Kramer, R., and Palmieri, F. (1993). Kinetic characterization of the reconstituted dicarboxylate carrier from mitochondria: A four-binding-site sequential transport system. Biochim. Biophys. Acta 1143:310–318.

    PubMed  CAS  Google Scholar 

  98. Bisaccia, F., De Palma, A., Dierks, T., Kramer, R., and Palmieri, F. (1993). Reaction mechanism of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 1142:139–145.

    PubMed  CAS  Google Scholar 

  99. Palmieri, E, Bisaccia, F., Capobianco, L., Iacobazzi, V., Indiveri, C., and Zara, V. (1990). Structural and functional properties of mitochondrial anion carriers. Biochim. Biophys. Acta 1018:147–150.

    PubMed  CAS  Google Scholar 

  100. Sluse, F. E., Evens, A., Dierks, T., Duychaerts, C., Sluse-Goffart, C. M., and Kramer, R. (1991). Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system. Biochim. Biophys. Acta 1058:329–338.

    PubMed  CAS  Google Scholar 

  101. Sluse, F. E., Sluse-Goffart, C. M., and Duyckaerts, C. (1989). Kinetic mechanisms of the adenylic and the oxoglutaric carriers: A comparison. In Anion Carriers of Mitochondrial Membranes (A. Azzi, K. A. Nalecz, M. J. Nalecz, and L. Wojtczak, eds.), Springer-Verlag, Berlin, pp. 183–195.

    Google Scholar 

  102. Indiveri, C., Dierks, T., Kramer, R., and Palmieri, F. (1991). Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur. J. Biochem. 198:339–347.

    PubMed  CAS  Google Scholar 

  103. Klingenberg, M. (1992). Structure-function of the ADP/ATP carrier. Biochem. Soc. Trans. 20:547–550.

    PubMed  CAS  Google Scholar 

  104. Boulay, F., and Vignais, P. V. (1984). Localization of the N-ethyl-maleimide reactive cysteine in the beef heart mitochondrial ADP/ATP carrier protein. Biochemistry 23:4807–4812.

    PubMed  CAS  Google Scholar 

  105. Kaplan, R. S., and Pedersen, P. L. (1985). Isolation and reconstitution of the n-butylmalonate-sensitive dicarboxylate transporter from rat liver mitochondria. J. Biol. Chem. 260:10293–10298.

    PubMed  CAS  Google Scholar 

  106. Kaplan, R. S., Pratt, R. D., and Pedersen, P. L. (1986). Purification and characterization of the reconstitutively active phosphate transporter from rat liver mitochondria. J. Biol. Chem. 261:12767–12773.

    PubMed  CAS  Google Scholar 

  107. Zara, V., and Palmieri, F. (1988). Inhibition and labelling of the mitochondrial 2-oxoglutarate carrier by eosin-5-maleimide. FEBS Lett. 236:493–496.

    PubMed  CAS  Google Scholar 

  108. Jezek, P., and Drahota, Z. (1989). Sulfhydryl groups of the uncoupling protein of brown adipose tissue mitochondria. Distinction between sulfhydryl groups of the H+ channel and the nucleotide binding site. Eur. J. Biochem. 183:89–95.

    PubMed  CAS  Google Scholar 

  109. Hutson, S. M., Roten, S., and Kaplan, R. S. (1990). Solubilization and functional reconstitution of the branched-chain α-keto acid transporter from rat heart mitochondria. Proc. Natl. Acad. Sci. USA 87:1028–1031.

    PubMed  CAS  Google Scholar 

  110. Nalecz, K. A., Muller, M., Zambrowicz, E. B., Wojtczak, L., and Azzi, A. (1990). Significance and redox state of SH groups in pyruvate carrier isolated from bovine heart mitochondria. Biochim. Biophys. Acta. 1016:272–279.

    PubMed  CAS  Google Scholar 

  111. Stappen, R., Dierks, T., Broer, A., and Kramer, R. (1992). Probing the active site of the reconstituted aspartate/glutamate carrier from mitochondria. Structure/function relationship involving one lysine and two cysteine residues. Eur. J. Biochem. 210:269–277.

    PubMed  CAS  Google Scholar 

  112. Indiveri, C., Tonazzi, A., Dierks, T., Kramer, R., and Palmieri, F. (1992). The mitochondrial carnitine carrier: Characterization of SH-groups relevant for its transport function. Biochim. Biophys. Acta 1140:53–58.

    PubMed  CAS  Google Scholar 

  113. Bogner, W., Aquila, H., and Klingenberg, M. (1986). The transmembrane arrangement of the ADP/ATP carrier as elucidated by the lysine reagent pyridoxal 5-phosphate. Eur. J. Biochem. 161:611–620.

    PubMed  CAS  Google Scholar 

  114. Dierks, T., Stappen, R., Salentin, A., and Kramer, R. (1992). Probing the active site of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria: Carbodiimide-catalyzed acylation of a functional lysine residue. Biochim. Biophys. Acta 1103:13–24.

    PubMed  CAS  Google Scholar 

  115. Genchi, G., Pétrone, G., De Palma, A., Cambria, A., and Palmieri, F. (1988). Interaction of phenylisothiocyanates with the mitochondrial phosphate carrier. I. Covalent modification and inhibition of phosphate transport. Biochim. Biophys. Acta 936:413–420.

    PubMed  CAS  Google Scholar 

  116. Stipani, I., Zara, V., Zaki, L., Prezioso, G., and Palmieri, F. (1986). Inhibition of the mitochondrial tricarboxylate carrier by arginine-specific reagents. FEBS Lett. 205:282–286.

    PubMed  CAS  Google Scholar 

  117. Plapp, B. V. (1982). Application of affinity labeling for studying structure and function of enzymes. Methods Enzymol. 87:469–499.

    PubMed  CAS  Google Scholar 

  118. Gremse, D. A., Dean, B., and Kaplan, R. S. (1995). Effect of pyri-doxzal 5′-phosphate on the function of the purified mitochondrial tricarboxylate transport protein. Arch. Biochem. Biophys. 316:215–219.

    PubMed  CAS  Google Scholar 

  119. Block, M. R., Lauquin, G. J. M., and Vignais, P. V. (1981). Chemical modifications of atractyloside and bongkrekic acid binding sites of the mitochondrial adenine nucleotide carrier. Are there distinct binding sites? Biochemistry 20:2692–2699.

    PubMed  CAS  Google Scholar 

  120. Vignais, P. V, and Lunardi, J. (1985). Chemical probes of the mitochondrial ATP synthesis and translocation. Annu. Rev. Biochem. 54:977–1014.

    PubMed  CAS  Google Scholar 

  121. Indiveri, C, Tonazzi, A., Giangregorio, N., and Palmieri, F. (1995). Probing the active site of the reconstituted carnitine carrier from rat liver mitochondria with sulfhydryl reagents: A cysteine residue is localized in or near the substrate binding site. Eur. J. Biochem. 228:271–278.

    PubMed  CAS  Google Scholar 

  122. Boulay, F., Lauquin, G. J. M., Tsugita, A., and Vignais, P. V (1983). Photolabeling approach to the study of the topography of the atractyloside binding site in mitochondrial adenosine 5′-diphosphate/adenosine 5′-triphosphate carrier protein. Biochemistry 22:477–484.

    PubMed  CAS  Google Scholar 

  123. Dalbon, P., Brandolin, G., Boulay, F., Hoppe, J., and Vignais, P. V (1988). Mapping of the nucleotide-binding sites in the ADP/ATP carrier of beef heart mitochondria by photolabeling with 2-azido[α-32P]adenosine diphosphate. Biochemistry 27:5141–5149.

    PubMed  CAS  Google Scholar 

  124. Vignais, P. V, Brandolin, G., Boulay, F., Dalbon, P., Block, M. R., and Gauche, I. (1989). Recent developments in the study of the conformational states and the nucleotide binding sites of the ADP/ATP carrier. In Anion Carriers of Mitochondrial Membranes (A. Azzi, K. A. Nalecz, M. J. Nalecz, and L. Wojtczak, eds.), Springer-Verlag, Berlin, pp. 133–146.

    Google Scholar 

  125. Mayinger, P., Winkler, E., and Klingenberg, M. (1989). The ADP/ATP carrier from yeast (AAC-2) is uniquely suited for the assignment of the binding center by photoaffinity labeling. FEBS Lett. 244:421–426.

    PubMed  CAS  Google Scholar 

  126. Winkler, E., and Klingenberg, M. (1992). Photoaffinity labeling of the nucleotide-binding site of the uncoupling protein from hamster brown adipose tissue. Eur. J. Biochem. 203:295–304.

    PubMed  CAS  Google Scholar 

  127. Mayinger, P., and Klingenberg, M. (1992). Labeling of two different regions of the nucleotide binding site of the uncoupling protein from brown adipose tissue mitochondria with two ATP analogs. Biochemistry 31:10536–10543.

    PubMed  CAS  Google Scholar 

  128. Knirsch, M., Gawaz, M. P., and Klingenberg, M. (1989). The isolation and reconstitution of the ADP/ATP carrier from wild-type Saccharomyces cerevisiae. Identification of primarily one type (AAC-2). FEBS Lett. 244:427–432.

    PubMed  CAS  Google Scholar 

  129. Brandolin, G., Le Saux, A., Trezeguet, V., Vignais, P. V., and Lauquin, G. J.-M. (1993). Biochemical characterization of the isolated Anc2 adenine nucleotide carrier from Saccharomyces cerevisiae mitochondria. Biochem. Biophys. Res. Commun. 192:143–150.

    PubMed  CAS  Google Scholar 

  130. Guerin, B., Bukusoglu, C., Rakotomanana, F., and Wohlrab, H. (1990). Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein. J. Biol. Chem. 265:19736–19741.

    PubMed  CAS  Google Scholar 

  131. Nalecz, M. J., Nalecz, K. A., and Azzi, A. (1991). Purification and functional characterization of the pyruvate (monocarboxylate) carrier from baker’s yeast mitochondria (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1079:87–95.

    PubMed  CAS  Google Scholar 

  132. Persson, L.-O., and Srere, P. A. (1992). Purification of the mitochondrial citrate transporter in yeast. Biochem. Biophys. Res. Commun. 183:70–76.

    PubMed  CAS  Google Scholar 

  133. O’Malley, K., Pratt, P., Robertson, J., Lilly, M., and Douglas, M. G. (1982). Selection of the nuclear gene for the mitochondrial adenine nucleotide translocator by genetic complementation of the op, mutation in yeast. J. Biol. Chem. 257:2097–2103.

    PubMed  Google Scholar 

  134. Adrian, G. S., McCammon, M. T., Montgomery, D. L., and Douglas, M. G. (1986). Sequences required for delivery and localization of the ADP/ATP translocator to the mitochondrial inner membrane. Mol. Cell. Biol. 6:626–634.

    PubMed  CAS  Google Scholar 

  135. Lawson, J. E., and Douglas, M. G. (1988). Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J. Biol. Chem. 263:14812–14818.

    PubMed  CAS  Google Scholar 

  136. Kolarov, J., Kolarova, N., and Nelson, N. (1990). A third ADP/ATP translocator gene in yeast. J. Biol. Chem. 265:12711–12716.

    PubMed  CAS  Google Scholar 

  137. Phelps, A., Schobert, C. T., and Wohlrab, H. (1991). Cloning and characterization of the mitochondrial phosphate transport protein gene from the yeast Saccharomyces cerevisiae. Biochemistry 30:248–252.

    PubMed  CAS  Google Scholar 

  138. Holmstrom, K., Brandt, T., and Kallesoe, T. (1994). The sequence of a 32420 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae. Yeast 10:S47-S62.

    PubMed  Google Scholar 

  139. Kaplan, R. S., Mayor, J. A., Gremse, D. A., and Wood, D. O. (1995). High level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 270:4108–4114.

    PubMed  CAS  Google Scholar 

  140. Lawson, J. E., Gawaz, M., Klingenberg, M., and Douglas, M. G. (1990). Structure-function studies of adenine nucleotide transport in mitochondria. I. Construction and genetic analysis of yeast mutants encoding the ADP/ATP carrier protein of mitochondria. J. Biol. Chem. 265:14195–14201.

    PubMed  CAS  Google Scholar 

  141. Klingenberg, M., and Nelson, D. R. (1994). Structure-function relationships of the ADP/ATP carrier. Biochim. Biophys. Acta 1187:241–244.

    PubMed  CAS  Google Scholar 

  142. Klingenberg, M., Gawaz, M., Douglas, M. G., and Lawson, J. E. (1992). Mutagenized ADP/ATP carrier from Saccharomyces. In Molecular Mechanisms of Transport (E. Quagliariello and F. Palmieri, eds.), Elsevier, Amsterdam, pp. 187–195.

    Google Scholar 

  143. Nelson, D. R., and Douglas, M. G. (1993). Function-based mapping of the yeast mitochondrial ADP/ATP translocator by selection for second site revenants. J. Mol. Biol. 230:1171–1182.

    PubMed  CAS  Google Scholar 

  144. Phelps, A., and Wohlrab, H. (1991). Mitochondrial phosphate transport. The Saccharomyces cerevisiae (threonine 43 to cysteine) mutant protein explicitly identifies transport with genomic sequence.J. Biol. Chem. 266:19882–19885.

    PubMed  CAS  Google Scholar 

  145. Phelps, A., and Wohlrab, H. (1993). Cys28 of the mitochondrial phosphate transport protein is responsible for the inhibition of transport by oxygen. FASEB J. 7:A1107.

    Google Scholar 

  146. Casteilla, L., Blondel, O., Klaus, S., Raimbault, S., Diolez, P., Moreau, F., Bouillaud, F., and Ricquier, D. (1990). Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 87:5124–5128.

    PubMed  CAS  Google Scholar 

  147. Ferreira, G. C, and Pedersen, P. L. (1992). Overexpression of higher eukaryotic membrane proteins in bacteria. Novel insights obtained with the liver mitochondrial proton/phosphate symporter. J. Biol. Chem. 267:5460–5466.

    PubMed  CAS  Google Scholar 

  148. Murdza-Inglis, D. L., Patel, H. V., Freeman, K. B., Jezek, P., Orosz, D. E., and Garlid, K. D. (1991). Functional reconstitution of rat uncoupling protein following its high level expression in yeast. J. Biol. Chem. 260:11871–11875.

    Google Scholar 

  149. Fiermonte, G., Walker, J. E., and Palmieri, F. (1993). Abundant bacterial expression and reconstitution of an intrinsic membrane-transport protein from bovine mitochondria. Biochem. J. 294:293–299.

    PubMed  CAS  Google Scholar 

  150. Xu, Y., Mayor, J. A., Gremse, D., Wood, D. O., and Kaplan, R. S. (1995). High-yield bacterial expression, purification, and functional reconstitution of the tricarboxylate transport protein from rat liver mitochondria. Biochem. Biophys. Res. Commun. 207:783–789.

    PubMed  CAS  Google Scholar 

  151. Wohlrab, H., and Briggs, C. (1994). Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141). Biochemistry 33:9371–9375.

    PubMed  CAS  Google Scholar 

  152. Xu, Y, Gremse, D. A., Mayor, J. A., and Kaplan, R. S. (1996). Functional consequences of mutating two cysteine residues in the yeast mitochondrial citrate transport protein. Biophys. J., 70:A414.

    Google Scholar 

  153. Schultheiss, H. P., and Klingenberg, M. (1984). Immunochemical characterization of the adenine nucleotide translocator. Organ specificity and conformation specificity. Eur. J. Biochem. 143:599–605.

    PubMed  CAS  Google Scholar 

  154. Schultheiss, H.-P, and Klingenberg, M. (1985). Immunoelec-trophoretic characterization of the ADP/ATP carrier from heart, kidney, and liver. Arch. Biochem. Biophys. 239:273–279.

    PubMed  CAS  Google Scholar 

  155. Rasmussen, U. B., and Wohlrab, H. (1986). Conserved structural domains among species and tissue-specific differences in the mitochondrial phosphate-transport protein and the ADP/ATP carrier. Biochim. Biophys. Acta 852:306–314.

    PubMed  CAS  Google Scholar 

  156. Zara, V., De Benedittis, R., Ragan, C. I., and Palmieri, F. (1990). Immunological characterization of the mitochondrial 2-oxoglu-tarate carrier from liver and heart: Organ specificity. FEBS Lett. 263:295–298.

    PubMed  CAS  Google Scholar 

  157. Li, K., Warner, C. K., Hodge, J. A., Minoshima, S., Kudoh, J., Fukuyama, R., Maekawa, M., Shimizu, Y, Shimizu, N., and Wallace, D. C. (1989). A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed. J. Biol. Chem. 264:13998–14004.

    PubMed  CAS  Google Scholar 

  158. Houldsworth, J., and Attardi, G. (1988). Two distinct genes for ADP/ATP translocase are expressed at the mRNA level in adult human liver. Proc. Natl. Acad. Sci. USA 85:377–381.

    PubMed  CAS  Google Scholar 

  159. Battini, R., Ferrari, S., Kaczmarek, L., Calabretta, B., Chen, S.-T., and Baserga, R. (1987). Molecular cloning of a cDNA for a human ADP/ATP carrier which is growth-regulated. J. Biol. Chem. 262: 4355–4359.

    PubMed  CAS  Google Scholar 

  160. Ku, D.-H., Kagan, J., Chen, S.-T., Chang, C.-D., Baserga, R., and Wurzel, J. (1990). The human fibroblast adenine nucleotide translocator gene. Molecular cloning and sequence. J. Biol. Chem. 265:16060–16063.

    PubMed  CAS  Google Scholar 

  161. Baker, A., and Leaver, C. J. (1985). Isolation and sequence analysis of a cDNA encoding the ATP/ADP translocator of Zea mays L. Nucleic Acids Res. 13:5857–5867.

    PubMed  CAS  Google Scholar 

  162. Bathgate, B., Baker, A., and Leaver, C. J. (1989). Two genes encode the adenine nucleotide translocator of maize mitochondria. Isolation, characterisation and expression of the structural genes. Eur. J. Biochem. 183:303–310.

    PubMed  CAS  Google Scholar 

  163. Jacobsson, A., Stadler, U., Glotzer, M. A., and Kozak, L. P. (1985). Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J. Biol. Chem. 260:16250–16254.

    PubMed  CAS  Google Scholar 

  164. Bouillaud, F., Ricquier, D., Thibault, J., and Weissenback, J. (1985). Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc. Natl. Acad. Sci. USA 82:445–448.

    PubMed  CAS  Google Scholar 

  165. Cassard, A.-M., Bouillaud, F, Mattei, M.-G., Hentz, E., Raimbault, S., Thomas, M., and Ricquier, D. (1990). Human uncoupling protein gene: Structure, comparison with rat gene, and assignment to the long arm of chromosome 4. J. Cell. Biochem. 43:255–264.

    PubMed  CAS  Google Scholar 

  166. Palmieri, F., Bisaccia, F., Iacobazzi, V., Indiveri, C, and Zara, V. (1992). Mitochondrial substrate carriers. Biochim. Biophys. Acta 1101:223–227.

    PubMed  CAS  Google Scholar 

  167. Iacobazzi, V., Palmieri, F, Runswick, M. J., and Walker, J. E. (1992). Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carrier. DNA Sequence 3:79–88.

    PubMed  CAS  Google Scholar 

  168. Bouillaud, F, Raimbault, S., and Ricquier, D. (1988). The gene for rat uncoupling protein: Complete sequence, structure of primary transcript and evolutionary relationship between exons. Biochem. Biophys. Res. Commun. 157:783–792.

    PubMed  CAS  Google Scholar 

  169. Kozak, L. P., Britton, J. H., Kozak, U. C, and Wells, J. M. (1988). The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. J. Biol. Chem. 263:12274–12277.

    PubMed  CAS  Google Scholar 

  170. Chodosh, L. A., Baldwin, A. S., Carthew, R. W., and Sharp, P. A. (1988). Human CCAAT-binding proteins have heterologous subunits. Cell 53:11–24.

    PubMed  CAS  Google Scholar 

  171. Rossouw, C. M. S., Vergeer, W. P., du Plooy, S. J., Bernard, M. P., Ramirez, F., and de Wet, W. J. (1987). DNA sequences in the first intron of the human pro-αl(I) collagen gene enhance transcription. J. Biol. Chem. 262:15151–15157.

    PubMed  CAS  Google Scholar 

  172. Li, K., Hodge, J. A., and Wallace, D. C. (1990). OXBOX, a positive transcriptional element of the heart-skeletal muscle ADP/ATP translocator gene. J. Biol. Chem. 265:20585–20588.

    PubMed  CAS  Google Scholar 

  173. Chung, A. B., Stepien, G., Haraguchi, Y., Li, K., and Wallace, D. C. (1992). Transcriptional control of nuclear genes for the mitochondrial muscle ADP/ATP translocator and the ATP synthase ß subunit. Multiple factors interact with the OXBOX/REBOX promoter sequences. J. Biol. Chem. 267:21154–21161.

    PubMed  CAS  Google Scholar 

  174. Cassard-Doulcier, A.-M., Gelly, C, Fox, N., Schrementi, J., Raimbault, S., Klaus, S., Forest, C, Bouillaud, F, and Ricquier, D. (1993). Tissue-specific and ß-adrenergic regulation of the mitochondrial uncoupling protein gene: Control by cis-acting elements in the 5′-flanking region. Mol. Endocrinol. 7:497–506.

    PubMed  CAS  Google Scholar 

  175. Cassard-Doulcier, A.-M., Larose, M., Matamala, J. C, Champigny, O., Bouillaud, F, and Ricquier, D. (1994). In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Etsl, retinoid X receptor, thyroid hormone receptor, and a CACCC box-binding protein. J. Biol. Chem. 269:24335–24342.

    PubMed  CAS  Google Scholar 

  176. Lunardi, J., Hurko, O., Engel, W. K., and Attardi, G. (1992). The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J. Biol. Chem. 267:15267–15270.

    PubMed  CAS  Google Scholar 

  177. Lunardi, J., and Attardi, G. (1991). Differential regulation of expression of the multiple ADP/ATP translocase genes in human cells. J. Biol. Chem. 266:16534–16540.

    PubMed  CAS  Google Scholar 

  178. Ricquier, D., Bouillaud, F, Toumelin, P., Mory, G., Bazin, R., Arch, J., and Penicaud, L. (1986). Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue. Evidence for a rapid ß-adrenoreeeptor-mediated and transcriptionally regulated step during activation of thermogenesis. J. Biol. Chem. 261:13905–13910.

    PubMed  CAS  Google Scholar 

  179. Ricquier, D., and Bouillaud, F (1986). The brown adipose tissue mitochondrial uncoupling protein. In Brown Adipose Tissue (P. Trayhurn and D. G. Nicholls, eds.), Edward Arnold, Baltimore, pp. 86–104.

    Google Scholar 

  180. Champigny, O., and Ricquier, D. (1990). Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: Evidence for diet-induced and cold-induced responses. J. Nutr. 120:1730–1736.

    PubMed  CAS  Google Scholar 

  181. Bianco, A. C, Sheng, X., and Silva, J. E. (1988). Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. J. Biol. Chem. 263:18168–18175.

    PubMed  CAS  Google Scholar 

  182. Soboll, S. (1993). Thyroid hormone action on mitochondrial energy transfer. Biochim. Biophys. Acta 1144:1–16.

    PubMed  CAS  Google Scholar 

  183. Nelson, B. D. (1990). Thyroid hormone regulation of mitochondrial function. Comments on the mechanism of signal transduction. Biochim. Biophys. Acta 1018:275–277.

    PubMed  CAS  Google Scholar 

  184. Soboll, S. (1993). Long-term and short-term changes in mitochondrial parameters by thyroid hormones. Biochem. Soc. Trans. 21:799–803.

    PubMed  CAS  Google Scholar 

  185. Paradies, G., and Ruggiero, F M. (1990). Stimulation of phosphate transport in rat-liver mitochondria by thyroid hormones. Biochim. Biophys. Acta 1019:133–136.

    PubMed  CAS  Google Scholar 

  186. Paradies, G., and Ruggiero, F M. (1988). Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria. Biochim. Biophys. Acta 935:79–86.

    PubMed  CAS  Google Scholar 

  187. Paradies, G., and Ruggiero, F. M. (1990). Enhanced activity of the tricarboxylate carrier and modification of the lipids in hepatic mitochondria from hyperthyroid rats. Arch. Biochem. Biophys. 278:425–430.

    PubMed  CAS  Google Scholar 

  188. Babior, B. M., Creagan, S., Ingbar, S. H., and Kipnes, R. S. (1973). Stimulation of mitochondrial adenosine diphosphate uptake by thyroid hormones. Proc. Natl. Acad. Sci. USA 70:98–102.

    PubMed  CAS  Google Scholar 

  189. Mowbray, J., and Corrigall, J. (1984). Short-term control of mitochondrial adenine nucleotide translocator by thyroid hormone. Eur. J. Biochem. 139:95–99.

    PubMed  CAS  Google Scholar 

  190. Mak, I. T., Shrago, E., and Elson, C. E. (1983). Effect of thyroidectomy on the kinetics of ADP-ATP translocation in liver mitochondria. Arch. Biochem. Biophys. 226:317–323.

    PubMed  CAS  Google Scholar 

  191. Sterling, K., and Brenner, M. A. (1995). Thyroid hormone action: effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metabolism 44:193–199.

    PubMed  CAS  Google Scholar 

  192. Paradies, G., and Ruggiero, F M. (1989). Decreased activity of the pyruvate translocator and changes in the lipid composition in heart mitochondria from hypothyroid rats. Arch. Biochem. Biophys. 269:595–602.

    PubMed  CAS  Google Scholar 

  193. Luciakova, K., and Nelson, B. D. (1992). Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion. Eur. J. Biochem. 207:247–251.

    PubMed  CAS  Google Scholar 

  194. Kopecky, J., Baudysova, M., Zanotti, F., Janikova, D., Pavelka, S., and Houstek, J. (1990). Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture. J. Biol. Chem. 265:22204–22209.

    PubMed  CAS  Google Scholar 

  195. Burcelin, R., Kande, J., Ricquier, D., and Girard, J. (1993). Changes in uncoupling protein and GLUT4 glucose transporter expressions in interscapular brown adipose tissue of diabetic rats: Relative roles of hyperglycaemia and hypoinsulinaemia. Biochem. J. 291:109–113.

    PubMed  CAS  Google Scholar 

  196. Titheradge, M. A., and Coore, H. G. (1976). Hormonal regulation of liver mitochondrial pyruvate carrier in relation to gluconeogenesis and lipogenesis. FEBS Lett. 71:73–78.

    CAS  Google Scholar 

  197. Garrison, J. C, and Haynes, R. C, Jr. (1975). The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. J. Biol. Chem. 250:2769–2777.

    PubMed  CAS  Google Scholar 

  198. Halestrap, A. P. (1978). Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Biochem. J. 172:389–398.

    PubMed  CAS  Google Scholar 

  199. Nosek, M. T., Dransfield, D. T., and Aprille, J. R. (1990). Calcium stimulates ATP-Mg/Pi carrier activity in rat liver mitochondria. J. Biol Chem. 265:8444–8450.

    PubMed  CAS  Google Scholar 

  200. Aprille, J. R. (1988). Regulation of the mitochondrial adenine nucleotide pool size in liver: Mechanism and metabolic role. FASEB J. 2:2547–2556.

    PubMed  CAS  Google Scholar 

  201. Harano, Y., Kashiwagi, A., Kojima, H., Suzuki, M., Hashimoto, T., and Shigeta, Y (1985). Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 188:267–272.

    PubMed  CAS  Google Scholar 

  202. Randle, P. J., Sugden, P. H., Kerbey, A. L., Radcliffe, P. M., and Hutson, N. J. (1978). Regulation of pyruvate oxidation and the conservation of glucose. Biochem. Soc. Symp. 43:47–67.

    PubMed  CAS  Google Scholar 

  203. Bradford, A. P., and Yeaman, S. J. (1986). Mitochondrial protein kinases and phosphatases. Adv. Prot. Phosphatases 3:73–106.

    CAS  Google Scholar 

  204. Reed, L. J., and Damuni, Z. (1987). Mitochondrial protein phosphatases. Adv. Prot. Phosphatases 4:59–76.

    CAS  Google Scholar 

  205. Schwoch, G., Trinczek, B., and Bode, C. (1990). Localization of catalytic and regulatory subunits of cyclic AMP-dependent protein kinases in mitochondria from various rat tissues. Biochem. J. 270:181–188.

    PubMed  CAS  Google Scholar 

  206. Muller, G., and Bandlow, W. (1987). Protein phosphorylation in yeast mitochondria: cAMP-dependence, submitochondrial localization and substrates of mitochondrial protein kinases. Yeast 3:161–174.

    PubMed  CAS  Google Scholar 

  207. Henriksson, T., and Jergil, B. (1979). Protein kinase activity and endogenous phosphorylation in subfractions of rat liver mitochondria. Biochim. Biophys. Acta 588:380–391.

    PubMed  CAS  Google Scholar 

  208. Vardanis, A. (1977). Protein kinase activity at the inner membrane of mammalian mitochondria. J. Biol Chem. 252:807–813.

    CAS  Google Scholar 

  209. Ferrari, S., Moret, V., and Siliprandi, N. (1990). Protein phosphorylation in rat liver mitochondria. Mol Cell. Biochem. 97:9–16.

    PubMed  CAS  Google Scholar 

  210. Technikova-Dobrova, Z., Sardanelli, A. M., and Papa, S. (1993). Phosphorylation of mitochondrial proteins in bovine heart. Characterization of kinases and substrates. FEBS Lett. 322:51–55.

    PubMed  CAS  Google Scholar 

  211. Kemp, B. E., and Pearson, R. B. (1990). Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15:342–346.

    PubMed  CAS  Google Scholar 

  212. De Vivo, D. C. (1993). The expanding clinical spectrum of mitochondrial diseases. Brain Dev. 15:1–22.

    PubMed  Google Scholar 

  213. Scholte, H. R. (1988). The biochemical basis of mitochondrial diseases. J. Bioenerg. Biomembr. 20:161–191.

    PubMed  CAS  Google Scholar 

  214. LaNoue, K. F., Watts, J. A., and Koch, C. D. (1981). Adenine nucleotide transport during cardiac ischemia. Am. J. Physiol. 241:H663-H671.

    PubMed  CAS  Google Scholar 

  215. Regitz, V., Paulson, D. J., Hodach, R. J., Little, S. E., Schaper, W., and Shug, A. L. (1984). Mitochondrial damage during myocardial ischemia. Basic Res. Cardiol 79:207–217.

    PubMed  CAS  Google Scholar 

  216. Duan, J., and Karmazyn, M. (1989). Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion. Can. J. Physiol Pharmacol. 67:704–709.

    PubMed  CAS  Google Scholar 

  217. Borutaite, V., Mildaziene, V., Katiliute, Z., Kholodenko, B., and Toleikis, A. (1993). The function of ATP/ADP translocator in the regulation of mitochondrial respiration during development of heart ischemic injury. Biochim. Biophys. Acta 1142:175–180.

    PubMed  CAS  Google Scholar 

  218. Parinandi, N. L., Zwizinski, C. W., and Schmid, H. H. O. (1991). Free radical-induced alterations of myocardial membrane proteins. Arch. Biochem. Biophys. 289:118–123.

    PubMed  CAS  Google Scholar 

  219. Zwizinski, C. W., and Schmid, H. H. O. (1992). Peroxidative damage to cardiac mitochondria: Identification and purification of modified adenine nucleotide translocase. Arch. Biochem. Biophys. 294:178–183.

    PubMed  CAS  Google Scholar 

  220. Schultheiss, H.-P, Schwimmbeck, P., Boite, H.-D., and Klingenberg, M. (1985). The antigenic characteristics and the significance of the adenine nucleotide translocator as a major autoantigen to antimitochondrial antibodies in dilated cardiomyopathy. In Advances in Myocardiology (N. S. Dhalla and D. J. Hearse, eds.), Plenum Press, New York, pp. 311–327.

    Google Scholar 

  221. Schultheiss, H.-P, Schulze, K., Kuhl, U., Ulrich, G., and Klingenberg, M. (1986). The ADP/ATP carrier as a mitochondrial auto-antigen: Facts and perspectives. Ann. N.Y.Acad. Sci. 488:44–63.

    PubMed  CAS  Google Scholar 

  222. Kuhl, U., Ulrich, G., and Schultheiss, H.-P. (1987). Cross-reactivity of antibodies to the ADP/ATP translocator of the inner mitochondrial membrane with the cell surface of cardiac myocytes. Eur. Heart J. 8:(Suppl. J):219–222.

    Google Scholar 

  223. Schultheiss, H.-P, Berg, P., and Klingenberg, M. (1983). The mitochondrial adenine nucleotide translocator is an antigen in primary biliary cirrhosis. Clin. Exp. Immunol. 54:648–654.

    PubMed  CAS  Google Scholar 

  224. Schultheiss, H.-P, Berg, P. A., and Klingenberg, M. (1984). Inhibition of the adenine nucleotide translocator by organ specific autoantibodies in primary biliary cirrhosis. Clin. Exp. Immunol. 58:596–602.

    PubMed  CAS  Google Scholar 

  225. Bakker, H. D., Schölte, H. R., Bogert, C. V. D., Ruitenbeek, W., Jeneson, J. A. L., Wanders, R. J. A., Abeling, N. G. G. M., Dorland, B., Sengers, R. C. A., and Gennip, A. H. V. (1993). Deficiency of the adenine nucleotide translocator in muscle of a patient with myopathy and lactic acidosis: A new mitochondrial defect. Pediatr. Res. 33:412–417.

    PubMed  CAS  Google Scholar 

  226. Hayes, D. J., Taylor, D. J., Hilton-Jones, D., Arnold, D. L., Bone, P. J., and Radda, G. K. (1986). A new metabolic myopathy: A malate-aspartate-shuttle defect. Biochem. Soc. Trans. 14:1208–1209.

    CAS  Google Scholar 

  227. Scholte, H. R., Luyt-Houwen, I. E. M., Blom, W., Busch, H. F. M., De Jonge, P. C, De Visser, M., Huijmans, J. G. M., Jennekens, F. G. L, Mooy, P. D., Przyrembel, H., Schutgens, R. B. H., Vaandrager-Verduin, M. H. M., and Van Coster, R. N. A. (1986). Defects in mitochondrial beta oxidation. Ann. N.Y.Acad. Sci. 488:511–512.

    Google Scholar 

  228. Pande, S. V, and Murthy, M. S. R. (1994). Carnitine-acylcarnitine translocase deficiency: Implications in human pathology. Biochim. Biophys. Acta 1226:269–276.

    PubMed  CAS  Google Scholar 

  229. Paradies, G., Capuano, F., Palombini, G., Galeotti, T., and Papa, S. (1983). Transport of pyruvate in mitochondria from different tumor cells. Cancer Res. 43:5068–5071.

    PubMed  CAS  Google Scholar 

  230. Eboli, M. L., Paradies, G., Galeotti, T., and Papa, S. (1977). Pyruvate transport in tumour-cell mitochondria. Biochim. Biophys. Acta 460:183–187.

    PubMed  CAS  Google Scholar 

  231. Senior, A. E., McGowan, S. E., and Hilf, R. (1975). A comparative study of inner membrane enzymes and transport systems in mitochondria from R3230AC mammary tumor and normal rat mammary gland. Cancer Res. 35:2061–2067.

    PubMed  CAS  Google Scholar 

  232. Kolarov, J., Kuzela, S., Krempasky, V., and Ujhazy, V. (1973). Some properties of coupled hepatoma mitochondria exhibiting uncoupler-insensitive ATPase activity. Biochem. Biophys. Res. Commun. 55:1173–1179.

    PubMed  CAS  Google Scholar 

  233. Kaplan, R. S., Morris, H. P., and Coleman, P. S. (1982). Kinetic characteristics of citrate influx and efflux with mitochondria from Morris hepatomas 3924A and 16. Cancer Res. 42:4399–4407.

    PubMed  CAS  Google Scholar 

  234. Kielducka, A., Paradies, G., and Papa, S. (1981). A comparative study of the transport of pyruvate in liver mitochondria from normal diabetic rats. J. Bioenerg. Biomembr. 13:123–132.

    PubMed  CAS  Google Scholar 

  235. Rahman, R. O’Rourke, F., and Jungas, R. L. (1983). Effects of insulin on C02 fixation in adipose tissue. Evidence for regulation of pyruvate transport. J. Biol Chem. 258:483–490.

    PubMed  CAS  Google Scholar 

  236. Cheema-Dhadli, S., and Halperin, M. L. (1973). The role of the mitochondrial citrate transporter in the regulation of fatty acid synthesis: Effect of fasting and diabetes. Can. J. Biochem. 51:1542–1544.

    PubMed  CAS  Google Scholar 

  237. Lerner, E., Shug, A. L., Elson, C, and Shrago, E. (1972). Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals. J. Biol. Chem. 247:1513–1519.

    PubMed  CAS  Google Scholar 

  238. Kaplan, R. S., Oliveira, D. L., and Wilson, G. L. (1990). Streptozotocin-induced alterations in the levels of functional mitochondrial anion transport proteins. Arch. Biochem. Biophys. 280:181–191.

    PubMed  CAS  Google Scholar 

  239. Kaplan, R. S., Mayor, J. A., Blackwell, R., Maughon, R. H., and Wilson, G. L. (1991). The effect of insulin supplementation on diabetes-induced alterations in the extractable levels of functional mitochondrial anion transport proteins. Arch. Biochem. Biophys. 287:305–311.

    PubMed  CAS  Google Scholar 

  240. Kaplan, R. S., Mayor, J. A., Blackwell, R., Wilson, G. L., and Schaffer, S. W. (1991). Functional levels of mitochondrial anion transport proteins in non-insulin-dependent diabetes mellitus. Mol. Cell. Biochem. 107:79–86.

    PubMed  CAS  Google Scholar 

  241. Inoue, I., Saheki, T., Kayanuma, K., Uono, M., Nakajima, M., Takeshita, K., Koike, R., Yuasa, T., Miyatake, T., and Sakoda, K. (1988). Biochemical analysis of decreased ornithine transport activity in the liver mitochondria from patients with hyperornithinemia, hyperammonemia and homocitrullinuria. Biochim. Biophys. Acta 964:90–95.

    PubMed  CAS  Google Scholar 

  242. Hommes, F. A., Ho, C. K., Roesel, R. A., and Coryell, M. E. (1982). Decreased transport of ornithine across the inner mitochondrial membrane as a cause of hyperornithinaemia. J. Inher. Metab. Dis. 5:41–47.

    PubMed  CAS  Google Scholar 

  243. Oyanagi, K., Aoyama, T., Tsuchiyama, A., Nakao, T, Uetsuji, N., Wagatsuma, K., and Tsugawa, S. (1986). A new type of hyper-lysinaemia due to a transport defect of lysine into mitochondria. J. Inher. Metab. Dis. 9:313–316.

    PubMed  CAS  Google Scholar 

  244. Schonfeld, P., Fritz, S., Halangk, W., and Bohnensack, R. (1993). Increase in the adenine nucleotide translocase protein contributes to the perinatal maturation of respiration in rat liver mitochondria. Biochim. Biophys. Acta 1144:353–358.

    PubMed  CAS  Google Scholar 

  245. Nohl, H., and Kramer, R. (1980). Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech. Ageing Dev. 14:137–144.

    PubMed  CAS  Google Scholar 

  246. Paradies, G., and Ruggiero, F. M. (1990). Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim. Biophys. Acta 1016:207–212.

    PubMed  CAS  Google Scholar 

  247. Paradies, G., and Ruggiero, F. M. (1991). Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch. Biochem. Biophys. 284:332–337.

    PubMed  CAS  Google Scholar 

  248. Hansford, R. G. (1978). Lipid oxidation by heart mitochondria from young adult and senescent rats. Biochem. J. 170:285–295.

    PubMed  CAS  Google Scholar 

  249. Grigorenko, E. V., Small, W. C, Persson, L.-O., and Srere, P. A. (1990). Citrate synthase 1 interacts with the citrate transporter of yeast mitochondria. J. Mol. Recog. 3:215–219.

    CAS  Google Scholar 

  250. Kramer, R., and Klingenberg, M. (1977). Reconstitution of adenine nucleotide transport with purified ADP, ATP-carrier protein. FEBS Lett. 82:363–367.

    PubMed  CAS  Google Scholar 

  251. Kaplan, R. S., Pratt, R. D., and Pedersen, P. L. (1989). Purification and reconstitution of the phosphate transporter from rat liver mitochondria. Methods. Enzymol. 173:732–745.

    PubMed  CAS  Google Scholar 

  252. Gibb, G. M., Reid, G. P., and Lindsay, J. G. (1986). Purification and characterization of the phosphate/hydroxyl ion antiport protein from rat liver mitochondria. Biochem. J. 238:543–551.

    PubMed  CAS  Google Scholar 

  253. De Pinto, V., Tommasino, M., Palmieri, F, and Kadenback, B. (1982). Purification of the active mitochondrial phosphate carrier by affinity chromatography with an organomercurial agarose column. FEBS Lett. 148:103–106.

    PubMed  Google Scholar 

  254. Bisaccia, F., and Palmieri, F. (1984). Specific elution from hydroxylapatite of the mitochondrial phosphate carrier by cardiolipin. Biochim. Biophys. Acta 766:386–394.

    PubMed  CAS  Google Scholar 

  255. Kolbe, H. V. J., Costello, D., Wong, A., Lu, R. C, and Wohlrab, H. (1984). Mitochondrial phosphate transport. Large scale isolation and characterization of the phosphate transport protein from beef heart mitochondria. J. Biol. Chem. 259:9115–9120.

    PubMed  CAS  Google Scholar 

  256. Wohlrab, H., Kolbe, H. V. J., and Collins, A. (1986). Isolation and reconstitution of the phosphate transport protein from mitochondria. Methods Enzymol. 125:697–705.

    PubMed  CAS  Google Scholar 

  257. Stappen, R., and Kramer, R. (1993). Functional properties of the reconstituted phosphate carrier from bovine heart mitochondria: Evidence for asymmetric orientation and characterization of three different transport modes. Biochim. Biophys. Acta 1149:40–48.

    PubMed  CAS  Google Scholar 

  258. Bisaccia, F., De Palma, A., Prezioso, G., and Palmieri, F. (1990). Kinetic characterization of the reconstituted tricarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 1019:250–256.

    PubMed  CAS  Google Scholar 

  259. Bisaccia, F, Indiveri, C, and Palmieri, F. (1985). Purification of reconstitutively active α-oxoglutarate carrier from pig heart mitochondria. Biochim. Biophys. Acta 810:362–369.

    PubMed  CAS  Google Scholar 

  260. Indiveri, C, Palmieri, F., Bisaccia, F., and Kramer, R. (1987). Kinetics of the reconstituted 2-oxoglutarate carrier from bovine mitochondria. Biochim. Biophys. Acta 890:310–318.

    PubMed  CAS  Google Scholar 

  261. Bolli, R., Nalecz, K. A., and Azzi, A. (1989). Monocarboxylate and α-ketoglutarate carriers from bovine heart mitochondria. Purification by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. J. Biol. Chem. 264:18024–18030.

    PubMed  CAS  Google Scholar 

  262. Claeys, D., Muller, M., and Azzi, A. (1989). Purification and reconstitution of the 2-oxoglutarate carrier from bovine heart and liver mitochondria. In Anion Carriers of Mitochondrial Membranes (A. Azzi, K. A. Nalecz, M. J. Nalecz, and L. Wojtczak, eds.), Springer-Verlag, Berlin, pp. 17–34.

    Google Scholar 

  263. Bisaccia, F, Indiveri, C, and Palmieri, F (1988). Purification and reconstitution of two anion carriers from rat liver mitochondria: The dicarboxylate and the 2-oxoglutarate carrier. Biochim. Biophys. Acta 933:229–240.

    PubMed  CAS  Google Scholar 

  264. Indiveri, C, Capobianco, L., Kramer, R., and Palmieri, F. (1989). Kinetics of the reconstituted dicarboxylate carrier from rat liver mitochondria. Biochim. Biophys. Acta 977:187–193.

    PubMed  CAS  Google Scholar 

  265. Lancar-Benba, J., Foucher, B., and Saint-Macary, M. (1994). Purification of the rat-liver mitochondrial dicarboxylate carrier by affinity chromatography on immobilized malate dehydrogenase. Biochim. Biophys. Acta 1190:213–216.

    PubMed  CAS  Google Scholar 

  266. Nalcec, M. J., Szewczyk, A., Broger, C, Wojtczak, L., and Azzi, A. (1989). Isolation and functional reconstitution of the dicarboxylate carrier from bovine liver mitochondria. In Anion Carriers of Mitochondrial Membranes (A. Azzi, K. A. Nalecz, M. J. Nalecz, and L. Wojtczak, eds.), Springer-Verlag, Berlin, pp. 71–85.

    Google Scholar 

  267. Szewczyk, A., Nalecz, M. J., Broger, C, Wojtczak, L., and Azzi, A. (1987). Purification by affinity chromatography of the dicarboxylate carrier from bovine heart mitochondria. Biochim. Biophys. Acta 894:252–260.

    PubMed  CAS  Google Scholar 

  268. Nalecz, K. A., Kaminska, J., Nalecz, M. J., and Azzi, A. (1992). The activity of pyruvate carrier in a reconstituted system: Substrate specificity and inhibitor sensitivity. Arch. Biochem. Biophys. 297:162–168.

    PubMed  CAS  Google Scholar 

  269. Indiveri, C, Tonazzi, A., and Palmieri, F. (1990). Identification and purification of the carnitine carrier from rat liver mitochondria. Biochim. Biophys. Acta 1020:81–86.

    PubMed  CAS  Google Scholar 

  270. Indiveri, C, Tonazzi, A., Prezioso, G., and Palmieri, F. (1991). Kinetic characterization of the reconstituted carnitine carrier from rat liver mitochondria. Biochim. Biophys. Acta 1065:231–238.

    PubMed  CAS  Google Scholar 

  271. Kaminska, J., Nalecz, K. A., Azzi, A., and Nalecz, M. J. (1993). Purification of carnitine carrier from rat brain mitochondria. Biochem. Mol. Biol. Int. 29:999–1007.

    PubMed  CAS  Google Scholar 

  272. Bisaccia, F., De Palma, A., and Palmieri, F. (1992). Identification and purification of the aspartate/glutamate carrier from bovine heart mitochondria. Biochim. Biophys. Acta 1106:291–296.

    PubMed  CAS  Google Scholar 

  273. Indiveri, C, Tonazzi, A., and Palmieri, F. (1992). Identification and purification of the ornithine/citrulline carrier from rat liver mitochondria. Eur. J. Biochem. 207:449–454.

    PubMed  CAS  Google Scholar 

  274. Lin, C.S., and Klingenberg, M. (1980). Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett. 113:299–303.

    PubMed  CAS  Google Scholar 

  275. Klingenberg, M., and Winkler, E. (1985). The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J. 4:3087–3092.

    PubMed  CAS  Google Scholar 

  276. Klingenberg, M., and Winkler, E. (1986). Reconstitution of an H+ translocator, the “uncoupling protein” from brown adipose tissue mitochondria, in phospholipid vesicles. Methods Enzymol. 127:772–779.

    PubMed  CAS  Google Scholar 

  277. Ricquier, D., Lin, C.-S., and Klingenberg, M. (1982). Isolation of the GDP binding protein from brown adipose tissue mitochondria of several animals and amino acid composition study in rat. Biochem. Biophys. Res. Commun. 106:582–589.

    PubMed  CAS  Google Scholar 

  278. Capaldi, R. A., and Vanderkooi, G. (1972). The low polarity of many membrane proteins. Proc. Natl. Acad. Sci. USA 69:930–932.

    PubMed  CAS  Google Scholar 

  279. Gribskov, M., and Devereux, J. (1991). Sequence Analysis Primer, Stockton, New York, p. 233.

    Google Scholar 

  280. Bouillaud, F., Casteilla, L., and Ricquier, D. (1992). A conserved domain in mitochondrial transporters is homologous to a zincfinger knuckle of nuclear hormone receptors. Mol. Biol. Evol. 9:970–975.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Kaplan, R.S. (1996). Mitochondrial Transport Processes. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics