Skip to main content

New Materials From Reactions in Intermediate Temperature Molten Salts. Synthetic Methodologies for Multinary Solid State Chalcogenides

  • Chapter
Physics and Chemistry of Low-Dimensional Inorganic Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 354))

Abstract

The critical role solid state chemistry and physics play in modern technology is in little doubt. Solid state compounds have been the foundation of the entire electronics industry for many years, and many emerging technologies such as nonlinear optics, high-Tc superconductors, high energy density storage batteries, and photovoltaics, to name just a few, will hinge on developments in the economical processing of existing solid state materials and the discovery of new materials with new or enhanced properties. In this context, the importance of exploratory solid state synthesis is obvious. The bulk of exploratory synthesis in solid state chemistry traditionally has relied on high temperatures (>600 °C) to defeat the problem of solid state diffusion. These high temperatures give rise to two important synthetic limitations. First, the reactions almost always proceed to the most thermodynamically stable products; the high energies involved often leave little room for kinetic control. These thermodynamically stable products are typically the simplest of binary or ternary compounds, and because of their high lattice stability, they become synthetic road blocks which often take a considerable investment of effort to circumvent, if they can be circumvented at all. Second, the high reaction temperatures also dictate that only the simplest chemical building blocks can be used; that is, elements on the atomic level. Attempts to synthesize using molecules of known structure are doomed because the high temperatures used disrupt most bonds and reduce the system to atoms rushing to a thermodynamic minimum. Hence, multinary compounds are more difficult to form, the preference lying with the more stable binary and ternary compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Elwell and H. J. Scheel, Crystal Growth from High-Temperature Solutions, Academic Press, New York, 1975.

    Google Scholar 

  2. H. J. Scheel, J. Cryst. Growth, 24/25, 669, (1974).

    Article  Google Scholar 

  3. R. Sanjines, H. Berger, and F. Levy, Mater. Res. Bull., 23, 549, (1988).

    Article  CAS  Google Scholar 

  4. R. W. Garner and W. B. White, J. Cryst. Growth, 7, 343, (1970).

    Article  CAS  Google Scholar 

  5. S. A. Sunshine, D. Kang, and J. A. Ibers, J. Am. Chem. Soc., 109, 6202, (1987).

    Article  CAS  Google Scholar 

  6. The Sodium-Sulfur Battery, J. L. Sudworth and A. R. Tilley, Eds., Chapman and Hall, New York, 1985

    Google Scholar 

  7. W. Fischer, Mater. Res. Soc. Symp. Proc., 135, 541, (1989).

    Article  CAS  Google Scholar 

  8. R. W. Powers and B. R. Karas, J. Electrochem. Soc, 136, 2787, (1989).

    Article  CAS  Google Scholar 

  9. M. G. Kanatzidis, Chem. Mater, 2, 353, (1990).

    Article  CAS  Google Scholar 

  10. J. A. Cody, M. F. Mansuetto, S. Chien, and J. A. Ibers, Materials Science Forum, 152–153, 35, (1994).

    Google Scholar 

  11. M.G. Kanatzidis and A. Sutorik Prog. Inorg. Chem. 43, 151, (1990).

    Article  Google Scholar 

  12. Y Park, Ph. D. Dissertation, Michigan State University, E. Lansing, MI, 1991.

    Google Scholar 

  13. Savelsberg, G.; Schäfer, H. J. Less-Common Met. 80, 59–69, (1981).

    Article  Google Scholar 

  14. R. Berger and L. Eriksson, J. Less-Common Met., 161, 101, (1990).

    Article  CAS  Google Scholar 

  15. Y Park, D. C. DeGroot, J. Shindler, C. R. Kannewurf, and M. G. Kanatzidis, Angew. Chem., Int. Ed., Engl, 30, 1325, (1991).

    Article  Google Scholar 

  16. Y Park and M. G. Kanatzidis, Chem. Mater, 3, 781, (1991).

    Article  CAS  Google Scholar 

  17. X. Zhang, Y Park, T. Hogan, J. L. Schindler, C. R. Kannewurf, S. Seong, T. Albright and M. G. Kanatzidis, submitted for publication

    Google Scholar 

  18. X. Zhang, J. L. Schindler, T. Hogan, J. Albritton-Thomas, C. R. Kannewurf and M. G. Kanatzidis Angew. Chem., Int. Ed. Engl., 1994, in press

    Google Scholar 

  19. X. Zhang, J. L. Schindler, T. Hogan, J. Albritton-Thomas, C. R. Kannewurf and M. G. Kanatzidis work in progress.

    Google Scholar 

  20. G. J. Janz, E. Roduner, J. W. Coutts, and J. R. Downey, Jr., Inorg. Chem., 15(8), 1751, (1976).

    Article  CAS  Google Scholar 

  21. X. Zhang, J. Li, B. Foran, S. Lee, H.-Y Guo, T. Hogan, C. R. Kannewurf, M. G. Kanatzidis, submitted for publication.

    Google Scholar 

  22. J. Li, H.-Y. Guo, X. Zhang, M. G. Kanatzidis J. Alloys Comp., 218, 1–4, (1995).

    Article  CAS  Google Scholar 

  23. R. Berger, L. Eriksson and A. Meerschaut, J. Solid State Chem. 87, 283–288, (1990).

    Article  CAS  Google Scholar 

  24. C. Burschka and W. Bronger, Z. Anorg. Allg. Chem., 430, 61–65, (1977).

    Article  CAS  Google Scholar 

  25. Bronger, W.; Eyck, J.; Schils, H. J. Less-Common Met. 60, 5–13, (1978).

    Article  Google Scholar 

  26. Zhang, X.; Li, J.; Kanatzidis, M. G. unpublished results.

    Google Scholar 

  27. C. Burschka and W. Bronger, Z. Naturforsch. 32B, 11–14, (1977).

    CAS  Google Scholar 

  28. Burschka, C. Z. Anorg. Allg. Chem. 463, 65–71, (1980).

    Article  CAS  Google Scholar 

  29. Savelsberg, G.; Schäfer, H. Mater. Res. Bull. 16, 1291–1297, (1981)

    Article  CAS  Google Scholar 

  30. K. O. Klepp, J. Less Common Met. 128, 79–89, (1987).

    Article  CAS  Google Scholar 

  31. Burschka, C. Z. Naturforsch. 34B, 396–397, (1979).

    CAS  Google Scholar 

  32. Peplinski, Z.; Brown, D. B.; Watt, T.; Hatfield, W. E.; Day, P. Inorg. Chem. 21, 1752–1755, (1982).

    Article  CAS  Google Scholar 

  33. Wood, P. T.; Pennington, W. T.; Kolis, J. W Inorg. Chem., 33, 1556–1558, (1994).

    Article  CAS  Google Scholar 

  34. M. G. Kanatzidis Phosphorous, Sulfur and Silicon, 93–94, 159, (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Kanatzidis, M.G. (1996). New Materials From Reactions in Intermediate Temperature Molten Salts. Synthetic Methodologies for Multinary Solid State Chalcogenides. In: Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S. (eds) Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Series, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1149-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1149-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8449-9

  • Online ISBN: 978-1-4613-1149-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics