Skip to main content
  • 64 Accesses

Abstract

Receptors involved in the recognition of antigen by cells of the immune system are of three types: B cell receptors (BCR), T cell receptors (TCR) and Fc receptors (FcR). In spite of having different structures, of being expressed with different tissue distributions, of recognizing antigen under distinct modalities and of triggering different cellular responses, BCR, TCR and FcR were recently understood as structurally and functionally related members of the same family, referred to as the immunoreceptor family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pleinman C, D’Ambrosio D, Cambier J. The B cell antigen receptor complex: structure and signal transduction. Immunol Today 1994; 15:393–399.

    Article  Google Scholar 

  2. Weiss A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993; 73:209–212.

    Article  PubMed  CAS  Google Scholar 

  3. Hulett MD, Hogarth PM. Molecular basis of Fc Receptor function. Adv Immunol 1994; 57:1–127.

    Article  PubMed  CAS  Google Scholar 

  4. Orloff DG, Ra C, Frank SJ et al. The zeta and eta chains of the T cell receptor and the gamma chain of Fc receptors form a family of disulfide-linked dimers. Nature 1990; 347:189–191.

    Article  PubMed  CAS  Google Scholar 

  5. Kurosaki T, Gander I, Wirthmueller U et al. The β subunit of the FcεRI is associated with the FcγRIII on mast cells. J Exp Med 1992; 175:447–451.

    Article  PubMed  CAS  Google Scholar 

  6. Kinet JP, Blank U, Ra C et al. Isolation and characterization of cDNAs coding for the β subunit of the high-affinity receptor for immunoglobulin E. Proc Nad Acad Sci USA 1988; 85:6483–6487.

    Article  CAS  Google Scholar 

  7. Reth MG. Antigen receptor tail clue. Nature 1989; 338:383–384.

    Article  PubMed  CAS  Google Scholar 

  8. Cambier JC. New nomenclature for the Reth motif (or ARH1/TAM/ ARAM/YXXL). Immunol Today 1994; 16:110–110.

    Article  Google Scholar 

  9. Heldin CH, Dimerization of cell surface receptors in signal transduction. Cell 1995; 80:213–223.

    Article  PubMed  CAS  Google Scholar 

  10. Daëron M, Bonnerot C, Latour S et al. Murine recombinant FcγRIII, but not FcγRII, trigger serotonin release in rat basophilic leukemia cells. J Immunol 1992; 149:1365–1373.

    PubMed  Google Scholar 

  11. Bonnerot C, Amigorena S, Choquet D et al. Role of associated γ chain in tyrosine kinase activation via murine FcγRIII. EMBO J 1992; 11: 2747–2757.

    PubMed  CAS  Google Scholar 

  12. Hibbs ML, Walker ID, Kirszbaum L et al. The murine Fc receptor for immunoglobulin: purification, partial amino acid sequence, and isolation of cDNA clones. Proc Natl Acad Sci USA 1986; 83:6980–6984.

    Article  PubMed  CAS  Google Scholar 

  13. Lewis VA, Koch T, Plutner H et al. A complementary DNA clone for a macrophage-lymphocyte Fe receptor. Nature 1986; 324:372.

    Article  PubMed  CAS  Google Scholar 

  14. Ravetch JV, Luster AD, Weinshank R et al. Structural heterogeneity and functional domains of murine Immunoglobulin G Fe receptors. Science 1986; 234:718–725.

    Article  PubMed  CAS  Google Scholar 

  15. Stuart SG, Simister NE, Clarkson SB et al. IgG Fe receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J 1989; 8:3657–3666.

    PubMed  CAS  Google Scholar 

  16. Hibbs ML, Bonadonna L, Scott BM et al. Molecular cloning of a human Immunoglobulin G Fe receptor. Proc Natl Acad Sci USA 1988; 85:2240–2244.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks DG, Qiu WQ, Luster AD et al. Structure and expression of human IgG FcRII (CD32). Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. J Exp Med 1989; 170:1369–1386.

    Article  PubMed  CAS  Google Scholar 

  18. Hogarth PM, Witort E, Hulett MD et al. Structure of the mouse βFcγ receptor II gene. J Immunol 1991; 146:369–376.

    PubMed  CAS  Google Scholar 

  19. Latour S, Fridman WH, Daëron M. Identification, molecular cloning, biological properties and tissue distribution of a novel isoform of murine low-affinity IgG receptor homologous to human FcγRIIB1. J Immunol 1996; in press.

    Google Scholar 

  20. Miettinen HM, Rose JK, Mellman I. Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 1989; 58:317–327.

    Article  PubMed  CAS  Google Scholar 

  21. Daëron M, Malbec O, Latour S et al. Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine FcγRII in mast cells. Intern Immunol 1993; 5:1393–1401.

    Article  Google Scholar 

  22. Van den Herik-Oudijk IE, Capel PJA, Van der Bruggen T et al. Identification of signalling motifs within human FcγIIa and FcγRIIb isoforms. Blood 1995; 85:2202–2211.

    PubMed  Google Scholar 

  23. Miettinen HM, Matter K, Hunziker W et al. Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J Cell Biol 1992; 116:875.

    Article  PubMed  CAS  Google Scholar 

  24. Amigorena S, Bonnerot C, Drake J et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 1992; 256:1808–1812.

    Article  PubMed  CAS  Google Scholar 

  25. Amigorena S, Bonnerot C, Choquet D et al. FcγRII expression in resting and activated B lymphocytes. Eur J Immunol 1989; 19:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  26. Néauport-Sautès C, Dupuis D, Fridman WH. Specificity of Fe receptors of activated T cells. Relation with released immunoglobulin-binding factor. EurJ Immunol 1975; 5:849–854.

    Article  Google Scholar 

  27. Daëron M, Latour S, Malbec O et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of FcγRIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 1995; 3:635–646.

    Article  PubMed  Google Scholar 

  28. Benhamou M, Bonnerot C, Fridman WH et al. Molecular heterogeneity of murine mast cell Fcγ receptors. J Immunol 1990; 144:3071–3077.

    PubMed  CAS  Google Scholar 

  29. Esposito-Farese M-E, Sautès C, de la Salle H et al. Membrane and soluble FcγRII/III modulate the antigen-presenting capacity of murine dendritic epidermal Langerhans cells for IgG-complexed antigens. J Immunol 1995; 154:1725–1736.

    Google Scholar 

  30. Daëron M, Bonnerot C, Latour S et al. The murine (αFcγR gene product: identification, expression and regulation. Mol Immunol 1990; 27:1181–1188.

    Article  PubMed  Google Scholar 

  31. Möller G, Wigzell H. Antibody synthesis at the cellular level. Antibody-induced suppression of 19S and 7S antibody response. J Exp Med 1965; 121:969.

    Article  PubMed  Google Scholar 

  32. Henry C, Jerne NK. Competition of 19S and 7S antigen receptors in the regulation of the primary immune response. J Exp Med 1968; 128: 133–145.

    Article  PubMed  CAS  Google Scholar 

  33. Uhr JW, Möller G. Regulatory effect of antibody on the immune response. Adv Immunol 1968; 8:81.

    Article  PubMed  CAS  Google Scholar 

  34. Safford Jr JW, Tokuda S. Antibody-mediated suppression of the immune response: effect on the development of immunological memory. J Immunol 1971; 107:1213.

    PubMed  Google Scholar 

  35. Shek PN, Dubiski S. Allotypic suppression in rabbits: competition for target cell receptors between isologous and heterologous antibody and between native antibody and antibody fragments. J Immunol 1975; 114:621.

    PubMed  CAS  Google Scholar 

  36. Kohler H, Richardson BC, Smyk S. Immune response to phosphorylcholine. IV. Comparison of homologous and isologous anti-idiotypic antibody. J Immunol 1978; 120:233–238.

    PubMed  CAS  Google Scholar 

  37. Sinclair NRS, Chan PL. Regulation of the immune response. IV. The role of the Fc-fragment in feedback inhibition by antibody. Adv Exp Med Biol 1971; 12:609–615.

    Google Scholar 

  38. Sinclair NRS, Lees RK, Abrahams S et al. Regulation of the immune response. X. Antigen-antibody complex inactivation of cells involved in adoptive transfer. J Immunol 1974; 113:1493.

    PubMed  CAS  Google Scholar 

  39. Tew JG, Greene EJ, Makovski MH. In vitro evidence indicating a role for the Fc region of IgG in the mechanism for the long-term maintenace of antibody levels in vivo. Cell. Immunol 1976; 25:141.

    Google Scholar 

  40. Kohler H, Richardson B, Rowley DA et al. Immune response to phosphorylcholine. III. Requirement of the Fc portion and equal effectiveness of IgG subclasses in anti-receptor antibody-induced suppression. J Immunol 1977; 119:1979–1986.

    PubMed  CAS  Google Scholar 

  41. Stockinger B, Lemmel EM. Fc Receptor dependency of antibody-mediated feedback regulation: on the mechanism of inhibition. Cell Immunol 1978; 40:395–403.

    Article  PubMed  CAS  Google Scholar 

  42. Sidman CL, Unanue ER. Requirements for mitogenic stimulation of murine B cells by soluble anti-IgM antibodies. J Immunol 1979; 122:406–413.

    PubMed  CAS  Google Scholar 

  43. Sidman CL, Unanue ER. Control ob B lymphocyte function I. Inactivation of mitogenesis by interactions with surface immunoglobulin and Fc-Receptor molecules. J Exp Med 1976; 144:882–896.

    Article  PubMed  CAS  Google Scholar 

  44. Unkeless JC. Characterization of monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med 1979; 150:580–596.

    Article  PubMed  CAS  Google Scholar 

  45. Phillips NE, Parker DC. Cross-linking of B lymphocyte Fcγ receptors and membrane immunoglobulin inhibits anti-immunoglobulin-induced blastogenesis. J Immunol 1984; 132:627–632.

    PubMed  CAS  Google Scholar 

  46. Jones B, Tite JP, Janeway Jr. CA. Different phenotypic variants of the mouse B cell tumor A20/2J are selected by antigen- and mitogen-triggered cytotoxicity of L3T4-positive, I-A-restricted T cell clones. J Immunol 1986; 136:348–356.

    PubMed  CAS  Google Scholar 

  47. Van den Herik-Oudijk IE, Westerdaal NAC, Henriquez NV et al. Functional analysis of human FcγRII (CD32) isoforms expressed in B lymphocytes. J Immunol 1994; 152:574–585.

    Google Scholar 

  48. Katz HR, Arm JP, Benson AC et al. Maturation-related changes in the expression of FcγRII and FcγRIII on mouse mast cells derived in vitro and in vivo. J Immunol 1990; 145:3412–3417.

    PubMed  CAS  Google Scholar 

  49. Barsumian EL, Isersky C, Petrino MG et al. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol 1981; 11:317.

    Article  PubMed  CAS  Google Scholar 

  50. Daëron M, Malbec O, Latour S et al. Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J Clin Invest 1995; 95:577–585.

    Article  PubMed  Google Scholar 

  51. Wegener A-M, Letourneur F, Hoeveler A et al. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 1992; 68:83–95.

    Article  PubMed  CAS  Google Scholar 

  52. Muta T, Kurosaki T, Misulovin Z et al. A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B cell receptor signalling. Nature 1994; 368:70–73.

    Article  PubMed  CAS  Google Scholar 

  53. Perussia B, Tutt MM, Qui WQ et al. Murine natural killer cells express functional Fcγ receptor II encoded by the FcγRα gene. J Exp Med 1989; 170:73–86.

    Article  PubMed  CAS  Google Scholar 

  54. Bonnerot C, Amigorena S, Fridman WH et al. Unmethylation of specific sites in the 5′ region is critical for the expression of murine αFcγR gene. J Immunol 1990; 144:323–328.

    PubMed  CAS  Google Scholar 

  55. Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995; 268:405–408.

    Article  PubMed  CAS  Google Scholar 

  56. Wagtmann N, Biassoni R, Cantoni C et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 1995; 2:439–449.

    Article  PubMed  CAS  Google Scholar 

  57. d’Andrea A, Chang C, Franz-Bacon K et al. Molecular cloning of NKB1, a natural killer cell receptor for HLA-B allotypes. J Immunol 1995; 155:2306–2310.

    PubMed  Google Scholar 

  58. Nakajima H, Tomiyama H, Takiguchi M. Inhibition of γδ T cell recognition by receptors for MHC class I molecules. J Immunol 1995; 155:4139–4142.

    PubMed  CAS  Google Scholar 

  59. Burshtyn DN, Scharenberg AM, Wagtmann N et al. Recruitment of tyrosine phosphatase HCP by the killer cell inhibitory receptor. Immunity 1996; 4:77–85.

    Article  PubMed  CAS  Google Scholar 

  60. Olcese L, Lang P, Vély F et al. Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J Immunol 1996; 156:in press.

    Google Scholar 

  61. Choquet D, Partiseti M, Amigorena S et al. Cross-linking of IgG receptors inhibits membrane immunoglobulin-stimulated calcium influx in B lymphocytes. J. Cell Biol 1993; 121:355–363.

    Article  PubMed  CAS  Google Scholar 

  62. Diegel ML, Rankin BM, Bolen JB et al. Cross-linking of Fcγ Receptor to surface immunoglobulin on B cells provides an inhibitory signal that closes the plasma membrane calcium channel. J Biol Chem 1994; 15: 11407–11416.

    Google Scholar 

  63. D’Ambrosio D, Hippen KH, Minskoff SA et al. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by FcgRIIB1. Science 1995; 268:293–296.

    Article  PubMed  Google Scholar 

  64. Claphman DE. Calcium signaling. Cell 1995; 80:259–268.

    Article  Google Scholar 

  65. Divecha N, Irvine RF. Phospholipid signaling. Cell 1995; 80:269–278.

    Article  PubMed  CAS  Google Scholar 

  66. Cohen GB, Ren R, Baltimore D. Modular binding domains in signal transduction proteins. Cell 1995; 80:237–248.

    Article  PubMed  CAS  Google Scholar 

  67. Adachi M, Fischer EH, Ihle J et al. Mammalian SH2-containing protein tyrosine phosphatases. Cell 1996; 85:15–15.

    Article  PubMed  CAS  Google Scholar 

  68. Yi T, Cleveland JL, Ihle JN. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12–p13. Mol Cell Biol 1992; 12:836–846.

    PubMed  CAS  Google Scholar 

  69. Ono M, Bolland S, Tempst P et al. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature 1996; 383:263–266.

    Article  PubMed  CAS  Google Scholar 

  70. Van Toorenenbergen AW, Aalberse RC. IgG4 and passive sensitization of basophil leukocytes. Int Arch Allergy Appl Immunol 1981; 65:432–440.

    Article  PubMed  Google Scholar 

  71. Anselmino LM, Perussia B, Thomas LL. Human basophils selectively express the FcγRII (CDw32) subtype of IgG receptor. J. Allergy Clin. Immunol 1989; 84:907–914.

    Article  PubMed  CAS  Google Scholar 

  72. Frank SJ, Niklinska BB, Orloff DG et al. Structural mutations of the T cell receptor ζ chain and its role in T cell activation. Science 1990; 249:174–177.

    Article  PubMed  CAS  Google Scholar 

  73. Ljunggren HG, Kärre K. Host resistance directed selectively against H-2-defîcient lymphoma variants: analysis of the mechanism. J Exp Med 1985; 162:1745–1759.

    Article  PubMed  CAS  Google Scholar 

  74. Takai T, Ono M, Hikida M et al. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 1996; 379:346–349.

    Article  PubMed  CAS  Google Scholar 

  75. Greene MC, Shultz LD. Motheaten, an immunodeficient mutant of the mouse. Genetics and pathology. J Hered 1975; 66:250–258.

    Google Scholar 

  76. Shultz LD, Schweitzer PA, Rajan TV et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase Hcph) gene. Cell 1993; 73:1445–1454.

    Article  PubMed  CAS  Google Scholar 

  77. Gleich GJ, Zimmermann EM, Henderson LL et al. Effect of immunotherapy on immunoglobulin E and immunoglobulin G antibodies to ragweed antigens: a six-year prospective study. J Allergy Clin Immunol 1978; 62:261.

    Article  Google Scholar 

  78. Machiels JJ, Somville MA, Jacquemin MG et al. Allergen-antibody complexes can efficiently prevent seasonal rhinitis and asthma in grass pollen hypersensitive patients. Allergy 1991; 46:335–348.

    Article  PubMed  CAS  Google Scholar 

  79. Machiels JJ, Lebrun PM, Jacquemin MG et al. Significant reduction of nonspecific bronchial reactivity in patients with Dermatophagides pteronyssinus-sensitive allergic asthma under therapy with allergen-antibody complexes. Am Rev Respir Dis 1993; 147:1407–1412.

    PubMed  CAS  Google Scholar 

  80. Jutel M, Pichler WJ, Skrbic D et al. Bee vebom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-γ secretion in specific allergen-stimulated T cell cultures. J Immunol 1995; 154:4187–4194.

    PubMed  CAS  Google Scholar 

  81. Kaliss N. Immunological enhancement of tumor homografts in mice. A review. Cancer Res 1958; 18:992–1035.

    PubMed  CAS  Google Scholar 

  82. Voisin GA. Immunological facilitation, a broadening of the concept of the enhancement phenomenon. Progr Allergy 1971; 15:328–375.

    Article  CAS  Google Scholar 

  83. Capel PJA, Tamboer WPM, De Waal RMW et al. Passive enhancement of skin grafts by alloantibodies is Fc dependent. J Immunol 1979; 122:421–429.

    PubMed  CAS  Google Scholar 

  84. Leclerc JC, Plater C, Fridman WH. The role of Fc receptors (FcR) on thymus-derived lymphocytes. I. Presence of FcR on cytotoxic lymphocytes and absence of direct role in cytotoxicity. Eur J Immunol 1977; 7:543–548.

    Article  PubMed  CAS  Google Scholar 

  85. Avrameas S, Guilbert B, Dighiero G. Natural antibodies against actin, tubulin, myoglobin, thyroglobulin, fetuin, albumin and transferin are present in normal human sera and monoclonal immunoglobulins from multiple myeloma and Waldeström macroglobulinemia. Ann Immunol (Inst Pasteur) 1981; 132C:231–240.

    Article  CAS  Google Scholar 

  86. Hall PD. Immunomodulation with intraveinous immunoglobulin. Pharmacotherapy 1993; 13:564–573.

    PubMed  CAS  Google Scholar 

  87. Kazatchkine M, Dietrich G, Hurez V et al. V region-mediated selection of autoreactive repertoires by intravenous immunoglobulin (i.v.Ig). Immunol Rev 1994; 139:79–107.

    Article  PubMed  CAS  Google Scholar 

  88. Pribluda VS, Pribluda C, Metzger H. Transphophorylation as the mechanism by which the high affinity receptor for IgE is phosphorylated upon aggregation. Proc Natl Acad Sci USA 1994; 91:11246–11250.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Daëron, M. (1997). FcγR as Negative Coreceptors. In: Cell-Mediated Effects of Immunoglobulins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1181-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1181-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8501-4

  • Online ISBN: 978-1-4613-1181-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics