Skip to main content

Abstract

In the early 1970s, soon after the discovery of Fc receptors on lymphocytes, molecules binding antigen-complexed IgG were detected in culture supernatants of mouse activated T cells and called IgG-binding factors (IgG-BF). These IgG-BF were hypothesized to be derived from membrane FcγR and to correspond to soluble forms of these receptors. Soluble forms of Fcγ receptors (sFcγR) were subsequently described in supernatants of cells of the immune system other than T cells and generalized to isotypes other than IgG. The cloning and identification of FcR genes allowed the molecular characterization of some of their soluble products and the demonstration that soluble FcR can be generated either by proteolytic cleavage of membrane FcR or by alternative splicing of TM-encoding exons of FcR genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fridman WH, Golstein P. Immunoglobulin-binding factor present on and produced by thymus-processed lymphocytes (T cells). Cell Immunol 1974; 11:442–455.

    Article  PubMed  CAS  Google Scholar 

  2. Néauport-Sautès C, Rabourdin-Combe C, Fridman WH. T cell hybrids bear Fey receptors and secrete suppressor immunoglobulin binding factor. Nature 1979; 277:656–659.

    Article  PubMed  Google Scholar 

  3. Pure E, Durie CJ, Summerill CK et al. Identification of soluble Fe receptors in mouse serum and the conditioned medium of stimulated B cells. J Exp Med 1984; 160:1836–1849.

    Article  PubMed  CAS  Google Scholar 

  4. Esposito-Farèse ME, Sautès C, de la Salle H et al. Membrane and soluble FcTγRII/III modulate the antigen presenting capacity of murine dendritic epidermal Langerhans cells for IgG-complexed antigens. J Immunol 1995; 155:1725–1736.

    PubMed  Google Scholar 

  5. Teillaud J-L, Bouchard C, Astier A et al. Natural and recombinant soluble low-affinity FcγR: detection, purification, and functional activities. Immuno Meth 1994; 4:48–64.

    Article  CAS  Google Scholar 

  6. Daëron M, Sautès C, Bonnerot C et al. Murine type II Fey receptors and IgG-binding factors. Chem Immunol 1989; 47:21–78.

    Article  PubMed  Google Scholar 

  7. Lynch A, Tartour E, Teillaud JL et al. Increased levels of soluble low affinity FcγReceptor (IgG-binding factor) in the sera of tumour-bearing mice. Clin Exp Immunol 1992; 87: 208–214.

    Article  PubMed  CAS  Google Scholar 

  8. Sautès C, Varin N, Teillaud C et al. Soluble Fcγ receptors II (FcγRII) are generated by cleavage of membrane FcγRII. Eur J Immunol 1990; 21:231–234.

    Article  Google Scholar 

  9. Fridman WH, Bonnerot C, Daëron M et al. Structural bases of Fcγ receptor functions. Immunol Rev 1992; 125:49–76.

    Article  PubMed  CAS  Google Scholar 

  10. Tartour E, de la Salle H, de la Salle C et al. Identification, in mouse macrophages and in serum, of a soluble receptor for the Fc portion of IgG (FcγR) encoded by an alternatively spliced transcript of the FcγRII gene. Intern Immunol 1993; 5:859–868.

    Article  CAS  Google Scholar 

  11. Sautès C, Galinha A, Bouchard C et al. Recombinant soluble Fcγ receptors: production, purification and biological activities. J Chromatography B 1994; 662:197–207.

    Article  Google Scholar 

  12. Varin N, Sautès C, Galinha A et al. Recombinant soluble receptors for the Fcγ portion inhibit antibody production in vitro. Eur J Immunol 1989; 19:2263–2268.

    Article  PubMed  CAS  Google Scholar 

  13. Hindley AS, Gao Y, Nash PH et al. The interaction of IgG with FcγRII: Involvement of the lower hinge binding site as probed by NMR. Bioch Soc Transactions 1993; 21:337S.

    Google Scholar 

  14. Lund J, Pound JD, Jones PT et al. Multiple binding sites on the CH2 domain of IgG mouse FcγRII. Mol Immunol 1992; 29:53–59.

    Article  PubMed  CAS  Google Scholar 

  15. Diamond B, Birshtein BK, Scharff MD. Site of binding of mouse IgG2b to the Fc receptor on mouse macrophages. J Exp Med 1979; 150:721–726.

    Article  PubMed  CAS  Google Scholar 

  16. Sandor M, Galon J, Takacs L et al. An alternative Fcγ-receptor ligand: Potential role in T cell development. Prod Natl Acad Sci USA 1994; 91:12857–12861.

    Article  CAS  Google Scholar 

  17. Sarmay G, Rozsnyay Z, Gergely J. FcγRII expression and release on resting and activated human B lymphocytes. Mol Immunol 1990; 27:1195–1200.

    Article  PubMed  CAS  Google Scholar 

  18. Astier A, de la Salle H, de la Salle C et al. Human epidermal Langerhans cells secrete a soluble receptor for IgG (FcγRII/CD32) that inhibits the binding of immune-complexes to FcγR+ cells. J Immunol 1994; 152:201–212.

    PubMed  CAS  Google Scholar 

  19. Gachet C, Astier A, de la Salle H et al. Release of FcγRIIa2 by activated platelets and inhibition of anti-CD9-mediated platelet aggregation by recombinant FcγRIIa2. Blood 1995; 85:698–704.

    PubMed  CAS  Google Scholar 

  20. Rappaport EF, Cassel DL, Walterhouse DO et al. A soluble form of the human Fc receptor FcγRIIA: cloning, transcript analysis and detection. Exp Hematol 1993; 21:689.

    PubMed  CAS  Google Scholar 

  21. Teillaud C, Fridman WH, Sautès C. Mise en évidence de récepteurs solubles de type II pour la partie Fc des IgG (ou RFcγIIs) dans la salive totale humaine. J Biol Buccale 1992; 20:3–10.

    PubMed  CAS  Google Scholar 

  22. Astier A, de la Salle H, Moncuit J et al. Detection and quantification of secreted soluble FcγRIIA in human sera by an enzyme-linked immuno-adsorbent assay. J Immunol Methods 1993; 166:1–10.

    Article  PubMed  CAS  Google Scholar 

  23. Sarmay G, Rozsnyay Z, Szabo L et al. Modulation of type II Fcγ receptor expression on activated human B lymphocytes. Eur J Immunol 1991; 21:541–549.

    Article  PubMed  CAS  Google Scholar 

  24. Walterhouse DO, Cassel DL, Schreiber AD et al. Characterization of HEL cell FcγRII cDNA clone lacking the sequence coding for the transmembrane region. Blood 1988; 72:344a.

    Google Scholar 

  25. Warmerdam PAM, Van de Winkel JGJ, Vlug A et al. A single amino acid in the second domain of the human Fcγ Receptor II is critical for human IgG2 binding. J Immunol 1991; 147:1338–1343.

    PubMed  CAS  Google Scholar 

  26. de la Salle C, Esposito-Farèse ME, Bieber T et al. Release of soluble FcγRII/CD32 molecules by human Langerhans cells: a subtle balance between shedding and secretion ? J. Investig Dermatol 1992; 99:15s–17s.

    Article  PubMed  Google Scholar 

  27. de la Salle H, Astier A, Esposito-Farese ME et al. Soluble FcγRII/CD32 released from human Langerhans cells are produced, at least in part, by the secretion of a transmembrane deleted receptor. Arch Derm Res 1993; 285:109.

    Google Scholar 

  28. Huizinga TWJ, de Haas M, van Oers MHJ et al. The plasma concentration of soluble Fc-gamma RIII is related to production of neutrophils. British Journal of Haematology 1994; 87:459–463.

    Article  PubMed  CAS  Google Scholar 

  29. Selvaraj P, Rosse WF, Silber R et al. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988; 333:565–567.

    Article  PubMed  CAS  Google Scholar 

  30. Huizinga TWJ, Kuijpers RWAM, Kleijer M et al. Maternal neutrophil FcRIII deficieny leading to neonatal isoimmune neutropenia. Blood 1990; 76:1927–1932.

    PubMed  CAS  Google Scholar 

  31. Koene HR, de Haas M, Kleijer M et al. NA-phenotype-dependent differences in neutrophils FcγRIIIb expression cause differences in plasma levels of soluble FcγRIII. Br J Haematol 1996; 93:235–241.

    Article  PubMed  CAS  Google Scholar 

  32. de Haas M, Kleijer M, Minchinton RM et al. Soluble FcγRIIIa is present in plasma and is derived from natural killer cells. J Immunol 1994; 152:900–907.

    PubMed  Google Scholar 

  33. Bazil V, Strominger JL. Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. J Immunol 1994; 152:1314–1322.

    PubMed  Google Scholar 

  34. Huizinga TW, De haas M, Kleijer M et al. Soluble Fey receptor III (CD16) in human plasma originates from release by neutrophils. J Clin Invest 1990; 86:416–423.

    Article  PubMed  CAS  Google Scholar 

  35. Tosi MF, Zakem H. Surface expression of Fcγ Receptor III (CD16) on chemoattractant-stimulated neutrophils is determined by both surface shedding and translocation from intracellular storage compartments. J Clin Invest 1992; 90:462–470.

    Article  PubMed  CAS  Google Scholar 

  36. Müllberg J, Durie FH, Otten-Evans C et al. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J Immunol 1995; 155:5198–5205.

    PubMed  Google Scholar 

  37. Dransfield I, Buckle AM, Savill JS et al. Neutrophil apoptosis is associated with a reduction in CD16 (FcγRIII) expression. J Immunol 1994; 153:1254–1263.

    PubMed  CAS  Google Scholar 

  38. Homburg CHE, de Haas M, von dem Borne AEGK et al. Human neutrophils lose their surface FcγRIII and acquire annexin V binding sites during apoptosis in vitro. Blood 1995; 2:532–540.

    Google Scholar 

  39. Harrison D, Phillips JH, Lanier LL. Involvement of a metalloprotease in spontaneous and phorbol ester-induced release natural killer cell-associated FcγRIII (CD16-II). J Immunol 1991; 147:3459–3465.

    PubMed  CAS  Google Scholar 

  40. Teillaud C, Galon J, Zilber M-T et al. Soluble CD16 binds peripheral blood mononuclear cells and inhibits pokeweed-mitogen (PWM)-induced responses. Blood 1993; 82:3081–3090.

    PubMed  CAS  Google Scholar 

  41. Galon J, Gauchat JF, Mazières N et al. Soluble Fey Receptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J Immunol 1996; 157:1184–1192.

    PubMed  CAS  Google Scholar 

  42. Zhou M-J, Todd III RF, van de Winkel JGJ et al. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcγ receptor III on human neutrophils. J Immunol 1993; 150:3030–3041.

    PubMed  CAS  Google Scholar 

  43. Poo H, Krauss J, Mayo-Bond L et al. Interaction of Fc gamma receptor type IIIB with complement receptor type 3 in fibroblast transfectants: evidence from lateral diffusion and resonance energy transfer studies. J Mol Biol 1995; 247:597–612.

    PubMed  CAS  Google Scholar 

  44. Zhou M, Brown E. CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J Cell Biol 1994; 125:1407.

    Article  PubMed  CAS  Google Scholar 

  45. Gisler RH, Fridman WH. Suppression of in vitro antibody synthesis by Immunoglobulin-Binding Factor. J Exp Med 1975; 142:507–511.

    Article  PubMed  CAS  Google Scholar 

  46. Gisler R H, Fridman WH. Inhibition of the in vitro 19S and 7S antibody response by Immunoglobulin- Binding Factor (IBF) from alloantigen-activated T cells. Cell Immunol 1976; 23:99–107.

    Article  PubMed  CAS  Google Scholar 

  47. Teillaud J-L, Amigorena S, Moncuit J et al. Immunoglobulin G-binding factors (IgG-BF) inhibit IgG secretion by, as well as proliferation of, hybridoma B cells. Immunol Letters 1987; 16:139–144.

    Article  CAS  Google Scholar 

  48. Lê Thi Bich T, Samarut C, Brochier J et al. Suppression of mitogen-induced peripheral B cell differentiation by soluble Fey receptors released from lymphocytes. Eur J Immunol 1980; 10:894–899.

    Article  Google Scholar 

  49. Bouchard C, Galinha A, Tartour E et al. A transforming growth factor β-like immunosuppressive factor in immunoglobulin G-binding factor. J Exp Med 1995; 182:1717–1726.

    Article  PubMed  CAS  Google Scholar 

  50. Fridman WH, Teillaud J-L, Bouchard C et al. Soluble Fcγ receptors. J Leuk Biol 1993; 54:504–512.

    CAS  Google Scholar 

  51. Aarli A, Skeie Jensen T, Ulvestad E et al. Suppression of mitogen-induced lymphoproliferation by soluble IgG Fc receptors in retroplacental serum in normal human pregnancy. Scand. J Immunol 1993; 37:237–243.

    CAS  Google Scholar 

  52. Stach RM, Rowley A. A first or dominant immunization. II. Induced immunoglobulin carries transforming growth factor β and suppresses cytolytic T Cell responses to unrelated alloantigens. J Exp Med 1993; 178:841–852.

    Article  PubMed  Google Scholar 

  53. Naito K, Hirama M, Okumura K et al. Soluble form of the human high-affinity receptor for IgE inhibits recurrent allergic reaction in a novel mouse model of type I allergy. Eur J Immunol 1995; 25:1631–1637.

    Article  PubMed  CAS  Google Scholar 

  54. Ra C, Kuromitsu S, Hirose T et al. Soluble human high-affinity receptor for IgE abrogates the IgE-mediated allergic reaction. Intern Immunol 1993; 5:47–54.

    Article  CAS  Google Scholar 

  55. Ishizaka K. Twenty years with IgE: from the identification of IgE to regulatory factors for the IgE response. J Immunol 1985; 135:1–10.

    Google Scholar 

  56. Ishizaka T, Sterk AR, Daëron M et al. Biochemical analysis of desensitization of mouse mast cells. J Immunol 1985; 135: 492–501.

    PubMed  CAS  Google Scholar 

  57. Kuff EL, Mietz JA, Trounstine ML et al. cDNA clones encoding murine IgE-binding factors represent multiple structural variants of intracisternal A-particle genes. Proc Natl Acad Sci USA 1986; 83:6583–6587.

    Article  PubMed  CAS  Google Scholar 

  58. Moore KW, Jardieu P, A. MJ et al. Rodent IgE-binding factor genes are members of an endogeneous retrovirus-like gene family. J Immunol 1986; 136:4283–4290.

    PubMed  CAS  Google Scholar 

  59. Sarfati M, Nakajima T, Frost H et al. Purification and partial biochemical characterization of IgE-binding factors secreted by a human B lymphoblastoid cell line. Immunology 1987; 60:539–545.

    PubMed  CAS  Google Scholar 

  60. Kikutani H, Inui S, Sato R et al. Molecular structure of human lymphocyte receptor for Immunoglobulin E. Cell 1986; 47:657–665.

    CAS  Google Scholar 

  61. Delespesse G, Sarfati M, Hofstetter H. Human IgE-binding factors. Immunol Today 1989; 10:159–164.

    Article  PubMed  CAS  Google Scholar 

  62. Letellier M, Nakajima T, Pulido-Cejudo G et al. Mechanism of formation of human IgE-binding factors (soluble CD23): III. Evidence for a receptor (FcεRII)-associated proteolytic activity. J Exp Med 1990; 172:693–700.

    Article  PubMed  CAS  Google Scholar 

  63. Matsui M, Nunez R, Sachi Y et al. Alternative transcripts of the human isoform in the type-II cell surface receptor. FEBS Letter 1993; 335:51–56.

    Article  CAS  Google Scholar 

  64. Beavil A, Edmeades R, Gould H et al. α-Helical coiled-coil stalks in the low-affinity receptor for IgE (FcεRII/CD23) and related C-type lectins. Proc Nad Acad Sci USA 1992; 89:753–760.

    Article  CAS  Google Scholar 

  65. Delespesse G, Suter U, Mossalayi D et al. Expression, structure and function of the CD23 antigen. Adv Immunol 1991; 49:149–191.

    Article  PubMed  CAS  Google Scholar 

  66. Bourget I, Di Berardino W, Breittmayer J-P et al. CD20 monoclonal antibodies decrease interleukin-4-stimulated expression of the low-affinity receptor for IgE (FcεRII/CD23) in human B cells by increasing the extent of its cleavage. Eur J Immunol 1995; 25:1872–1876.

    Article  PubMed  CAS  Google Scholar 

  67. Bonnefoy JY, Defrance T, Peronne C et al. Human recombinant interleukin 4 induces normal B cells to produce soluble CD23/IgE-binding factor analogous to that spontaneously released by lymphoblastoid B cell lines. Eur J Immunol 1988; 18:117–122.

    Article  PubMed  CAS  Google Scholar 

  68. Hashimoto S, Koh K, Tomita Y et al. TNF-α regulates IL-4 induced FcεRII/CD23 gene expression and soluble FcεRII release by human monocytes. Int Immunol 1995; 7:705–713.

    Article  PubMed  CAS  Google Scholar 

  69. Pène J, Rousset F, Brière F et al. Interleukin 5 enhances interleukin 4-in-duced IgE production by normal human B cells. The role of soluble CD23 antigen. Eur J Immunol 1988; 18:929–935.

    Article  PubMed  Google Scholar 

  70. Bertho J-M, Fourcade C, Dalloul AH et al. Synergistic effect of interleukin 1 and soluble CD23 on the growth of human CD4+ bone marrow-derived T cells. Eur J Immunol 1991; 21:1073–1080.

    Article  PubMed  CAS  Google Scholar 

  71. Mossalayi MD, Arock M, Bertho J-M et al. Proliferation of early human myeloid precursors induced by interleukin-1 and recombinant soluble CD23. Blood 1990; 75:1924–1930.

    PubMed  CAS  Google Scholar 

  72. Mossalayi MD, Lecron J-C, Dalloul AH et al. Soluble CD23 (FcεRII) and interleukin 1 synergistically induce early human thymocyte maturation. J Exp Med 1990; 171:959–964.

    Article  PubMed  CAS  Google Scholar 

  73. Liu Y-J, Cairns JA, Holder MJ et al. Recombinant 25-kDa CD23 and interleukin la promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol 1991; 21:1107–1114.

    Article  PubMed  CAS  Google Scholar 

  74. Aubry J-P, Pochon S, Graber P et al. CD21 is a ligand for CD23 and regulates IgE production. Nature 1992; 358:505–507.

    Article  PubMed  CAS  Google Scholar 

  75. Lecoanet-Henchoz S, Gauchat J, Aubry J et al. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CDllc-CD18. Immunity 1995; 3:119–125.

    Article  PubMed  CAS  Google Scholar 

  76. Armant M, Rubio M, Delespesse G et al. Soluble CD23 directly activates monocytes to contribute to the antigen-independent stimulation of resting T cells. J Immunol 1995; 155:4868–4875.

    PubMed  CAS  Google Scholar 

  77. Bartlett C, Conrad DH. Murine soluble FcεRII: A molecule in search of a function. Res Immunol 1992; 152:3378.

    Google Scholar 

  78. Stief A, Texido G, Sansig G et al. Mice deficient in CD23 reveal its modulatory role in IgE production but no role in T and B cell development. J Immunol 1994; 152:3378–3390.

    PubMed  CAS  Google Scholar 

  79. Kehry MR, Yamashita LC. Role of the low-affinity Fcε receptor in B lymphocyte antigen presentation. Res Immunol 1990; 141:77–81.

    Article  PubMed  CAS  Google Scholar 

  80. Fujiwara H, Kikutani H, Suematsu S et al. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc Natl Acad Sci USA 1994; 91:6835–6839.

    Article  PubMed  CAS  Google Scholar 

  81. Yu P, Kosco-Vilbois M, Richards M et al. Negative feedback regulation of IgE synthesis by murine CD23. Nature 1994; 369:753–755.

    Article  PubMed  CAS  Google Scholar 

  82. Kiyono H, Mosteller-Barnum LM, Pitts AM et al. Isotype-specific immunoregulation. IgA-binding factors produced by Fcα receptor-positive T cell hybridomas regulate IgA responses. J Exp Med 1985; 161:731–747.

    Article  PubMed  CAS  Google Scholar 

  83. Yodoi J, Adachi M, Teshigawara K et al. T cell hybridomas coexpressing Fc receptors (FcR) for different isotypes. II. IgA-Induced formation of suppressive IgA-Binding Factor(s) by a murine T hybridoma bearing FcγR and FcαR. J Immunol 1983; 131:303–310.

    PubMed  CAS  Google Scholar 

  84. Yodoi J, Adachi M, Keisuke T et al. T cell hybridoma co-expressing Fc receptors for different isotypes. I. Reciprocal regulation of FcγR and FcγR expression by IgA and interferon. Immunol 1983; 4:551–559.

    Google Scholar 

  85. Simpson SD, Snider DP, Zettel LA et al. Soluble FcR block suppressor T cell activity at low concentration in vitro allowing isotype-specific antibody production. Cell Immunol 1996; 167:122–128.

    Article  PubMed  CAS  Google Scholar 

  86. Coico RF, Siskind GW, Thorbecke J. Role of IgD and T cells in the regulation of humoral immune response. Immunol. Rev 1988; 105:45–68.

    Article  PubMed  CAS  Google Scholar 

  87. Maliszewski CR, March CJ, Schoenborn MA et al. Expression cloning of a human Fc receptor for IgA. J Exp Med 1990; 172:1665–1672.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Sautès, C. (1997). Soluble Fc Receptors. In: Cell-Mediated Effects of Immunoglobulins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1181-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1181-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8501-4

  • Online ISBN: 978-1-4613-1181-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics