Skip to main content

Flow Cytometric Proliferative Fraction Analysis in Solid Tumors

  • Chapter
Basic and Clinical Applications of Flow Cytometry

Part of the book series: Developments in Oncology ((DION,volume 77))

  • 63 Accesses

Abstract

Inappropriate growth regulation is a defining feature of malignant neoplasia which, to a great extent, becomes manifest as abnormal proliferation of neoplastic populations. In recent years, it has become clear that cell growth and proliferation are controlled by an elaborate homeostatic mechanism which is balanced by numerous intracellular and extracellular signals. It is hardly surprising then that oncogenes and tumor suppressor genes which mediate this process have been found to have great relevance in neoplastic transformation and progression, reflecting clinical behavior. Recent molecular genetic advances, however, reflect numerous traditional observations which elegantly documented the critical importance of abnormal growth regulation and cell cycling (1). Prognosis in many clinical tumor systems is strikingly correlated to arguably pedestrian estimates of proliferation such as mitotic counts on histologic tissue sections and empirical doubling times extrapolated from serial radiographic measurements (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malaise EP, Chavaudra N, Charbit A, Tubiana M: Relationship between the growth rate of human metastases, survival and pathologic type. Eur. J. Cancer 10:305–312, 1974.

    Google Scholar 

  2. Pearlman AW: Breast Cancer. Influence of growth rate on prognosis and treatment evaluation. A study on mastectomy scar recurrences. Cancer 38: 1826–1833, 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Tubiana M, Koscielny S: Cell kinetics, growth rate and the natural history of breast cancer. Eur. J. Cancer Clin. Oncol. 24:9–14, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. McDivitt RW, Stone KR, Craig B, et al: A proposed classification of breast cancer based on kinetic information. Derived from a comparison of risk factors in 168 primary operable breast cancers. Cancer 57:269–276, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Visscher DW, Sarkar FH, Crissman JD: Clinical significance of pathologic, cytometric and molecular parameters in carcinoma of the breast. In: Advances in Pathology and Laboratory Medicine, RS Weinstein (ed), Mosby, Vol. 5, 1992.

    Google Scholar 

  6. Baisch H, Beck HP, Christensen IJ, et al: A comparison of mathematical methods for the analysis of DNA histograms obtained by flow cytometry. Cell Tissue Kinet. 15:235–249, 1982.

    PubMed  CAS  Google Scholar 

  7. Meyer JS, Coplin MD: Thymidine labeling index, flow cytometric S-phase measurement, and DNA index in human tumors. Am. J. Clin. Pathol. 89:589–595, 1988.

    Google Scholar 

  8. Waldman FM, Chew K, Ljung BM, et al: A comparison between Bromodeoxyuridine and 3H thymidine labeling in human breast tumors. Modern Pathology 4:718–722, 1991.

    PubMed  CAS  Google Scholar 

  9. McDivitt RW, Stone KR, Meyer JS: A method of dissociation of viable human breast cancer cells that produces flow cytometric kinetic information similar to that obtained by thymidine labeling. Cancer Res. 44:2628–2633, 1984.

    PubMed  CAS  Google Scholar 

  10. Garcia RL, Coltrera MD, Gown AM: Analysis of proliferative grade using anti-PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Am. J. Pathol. 134:733–739, 1989.

    PubMed  CAS  Google Scholar 

  11. Sahin AA, Ro JY, El-Naggar AK, et al: Tumor proliferative fraction in solid malignant neoplasms. A comparative study of Ki-67 immunostaining and flow cytometric determinations. Am. J. Clin. Pathol. 96:512–519, 1991.

    PubMed  CAS  Google Scholar 

  12. Dawson AE, Norton JA, Weinberg DS: Comparative assessment of proliferation and DNA content in breast carcinoma by image analysis and flow cytometry. Am. J. Pathol. 136:1115–1124, 1990.

    PubMed  CAS  Google Scholar 

  13. Vielh P, Chevillard S, Mosseri V, et al: Ki67 index and S-phase fraction in human breast carcinomas. Am. J. Clin. Pathol. 94:681–686, 1990.

    PubMed  CAS  Google Scholar 

  14. McDivitt RW, Stone KR, Craig RB, Meyer JS: A comparison of human breast cancer cell kinetics measured by flow cytometry and thymidine labeling. Lab. Invest. 52:287–291, 1985.

    PubMed  CAS  Google Scholar 

  15. Isola JJ, Helin HJ, Helle MJ, Kallioniemi OP: Evaluation of cell proliferation in breast carcinoma. Comparison of Ki-67 immunohistochemical study, DNA flow cytometric analysis, and mitotic count. Cancer 65:1180–1184, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Rabinovitch PS: Practical considerations for DNA content and cell cycle analysis. In: Clinical Flow Cytometry, KD Bauer, RE Duque, TV Sharkey (eds.), Williams and Wilkins, Baltimore, pp. 117–142, 1990.

    Google Scholar 

  17. Bagwell CB: Theoretical aspects of flow cytometry data analysis. In: Clinical Flow Cytometry, KD Bauer, RE Duque, TV Sharkey (eds.), Williams and Wilkins, Baltimore, pp. 42–62, 1990.

    Google Scholar 

  18. Beerman H, Smit VT, Kluin PM, et al: Flow cytometric analysis of DNA stemline heterogeneity in primary and metastatic breast cancer. Cytometry 12: 147–154, 1991.

    Article  PubMed  Google Scholar 

  19. Olszewski W, Darzynkiewicz Z, Rosen PP, et al: Flow cytometry of breast carcinoma III. Possible altered kinetics in axillary lymph node metastases. Analy. Ouant. Cytol. 4:275–278, 1982.

    CAS  Google Scholar 

  20. Nicholson GL: Tumor cell instability, diversification, and progression to metastatic phenotype: From oncogene to oncofetal expression. Cancer Res. 47:1473–1487, 1987.

    Google Scholar 

  21. Meyer JS, Wittliff JL: Regional heterogeneity in breast carcinoma: Thymidine labelling index, steroid hormone receptors, DNA ploidy. Intl. J. Cancer 47:213–220, 1991.

    Article  CAS  Google Scholar 

  22. Kute TE, Gregory B, Galleshaw J, et al: How reproducible are flow cytometry data from paraffin-embedded blocks? Cytometry 9:494–498, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Feichter G, Czech W, Haag D, et al: Comparison of S-phase fractions measured by flow cytometry and autoradiography in human transplant tumors. Cytometry 9:605–611, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Weaver DL, Bagwell CB, Hitchcox SA, et al: Improved flow cytometric determination of proliferative activity (S-phase fraction) from paraffin-embedded tissue. Am. J. Clin. Pathol. 94:576–584, 1990.

    PubMed  CAS  Google Scholar 

  25. Rabinovitch PS, Barlow W, Visakorpi T, et al: Improving the prognostic strength of S and G2 estimates by optimizing DNA histogram analysis in breast cancer. Cytometry (suppl.) 6:82, 1993.

    Google Scholar 

  26. Haag D, Feichter G, Goerttler K, Kaufmann M: Influence of systematic errors on the evaluation of the S-phase portions from DNA distributions of solid tumors as shown for 328 breast carcinomas. Cytometry 8:377–385, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Visscher DW, Zarbo RJ, Jacobsen G, et al: Multiparametric deoxyribonucleic acid and cell cycle analysis of breast carcinomas by flow cytometry. Clinicopathologic correlations. Lab. Invest. 62: 370–378, 1990.

    PubMed  CAS  Google Scholar 

  28. Seamer LC, Bunt JC, Dressler LG, Revels A: A comparison of pulse gating and mathematical modeling methods of reducing the contribution of aggregates to flow cytometric DNA single parameter histograms. Cytometry (suppl.) 6:44, 1993.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Visscher, D.W., Wykes, S.M., Crissman, J.D. (1996). Flow Cytometric Proliferative Fraction Analysis in Solid Tumors. In: Valeriote, F.A., Nakeff, A., Valdivieso, M. (eds) Basic and Clinical Applications of Flow Cytometry. Developments in Oncology, vol 77. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1253-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1253-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8534-2

  • Online ISBN: 978-1-4613-1253-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics