Skip to main content

Inexpensive Method for Cryopreservation of Human Peripheral Blood Lymphocytes

  • Chapter
Cryopreservation and low temperature biology in blood transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 24))

  • 114 Accesses

Abstract

Liquid water is essential to the structure and function of living cells and it is thus not surprising that solidification of water by freezing is usually lethal to the cells. Paradoxically, however, appropriate freezing can also preserve cells for long periods of time in a viable state. The challenge to cells during freezing is not their ability to endure storage at very low temperatures, rather it is the lethality of the temperature zone from approximately −15°C to −60°C that the cell must traverse twice: once during cooling and once during warming.

The use of trade names is for identification only and does not constitute en-dorsement by the Public Health Service of the U.S. Department of Health and Human Services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984; 247: C125–42.

    PubMed  CAS  Google Scholar 

  2. Berman L, Goeman C, Peterson Jr WD. Viability of frozen lymphocytes. Lancet 1968;ii:89.

    Article  Google Scholar 

  3. Farrant J, Knight SC, McGann LE, O’Brien J. Optimal recovery of lymphocytes and tissue culture cells following rapid cooling. Nature 1974; 249: 452–3.

    Article  PubMed  CAS  Google Scholar 

  4. Mangi RJ, Mardiney Jr MR. The in vitro transformation of frozen-stored lymphocytes in the mixed lymphocyte reaction and in culture with photo hemagglutinin and specific antigens. J Exp Med 1970; 132: 401–16.

    Article  PubMed  CAS  Google Scholar 

  5. Walter CA, Knight SC, Farrant J. Ultrastructural appearance of freeze-substituted lymphocytes frozen by interrupting rapid cooling with a period at −26°C. Cryobiology 1975; 12: 103–9.

    Article  PubMed  CAS  Google Scholar 

  6. Golub SM, Sulit HL, Morton DL. The use of viable frozen lymphocytes for studies in human tumor immunology. Transplantation 1975; 19: 195.

    Article  PubMed  CAS  Google Scholar 

  7. Oldham RK, Simmler MC. The use of cryopreserved lymphocytes and lymphoblaste in 51Cr lymphocyte toxicity. In: Weiner RS, Oldham RK, Schwarzenberg L (eds). Cryoconservation des cellules normales et neoplastiques. Paris 1973: 161.

    Google Scholar 

  8. O’Toole C. Standardization of microtoxicity assay for cell-mediated immunity. Nat Cancer Inst Monogr 1973;37:19–24.

    PubMed  Google Scholar 

  9. Nathan P. Freeze-thaw-refreeze cycle to prepare lymphocytes for HLA antibody detection or tissue typing. Cryobiology 1974; 11: 305–11.

    Article  PubMed  CAS  Google Scholar 

  10. Perry VP, Martin JL, Kroener CA. Nutrient medium and frozen storage of human lymphocytes. Cryobiology 1975; 12: 386–96.

    Article  PubMed  CAS  Google Scholar 

  11. Wood N, Bashir H, Greally J, Amos DB, Yunis EJ. A simple method of freezing and storing live lymphocytes. Tissue Antigens 1972; 2: 27–31.

    Article  PubMed  CAS  Google Scholar 

  12. Nicholson JKA, Jones BM, Cross GD, McDougal JS. Comparison of T and B cell analyses on fresh and aged blood. J Imm Meth 1984; 73: 29–40.

    Article  CAS  Google Scholar 

  13. Venkataraman M, Westerman MP. Susceptibility of human T cells, T-cell subsets, and B cells to cryopreservation. Cryobiology 1986; 23: 199–208.

    Article  PubMed  CAS  Google Scholar 

  14. NCCLS. Clinical applications of flow cytometry: immunophenotyping of peripheral blood lymphocytes. Proposed standard H42-P. National Committee for Clinical Laboratory Standards, Villanova, PA 1989.

    Google Scholar 

  15. Koepke JA, Landay AL. Precision and accuracy of absolute lymphocyte counts. Clin Imm Immuno-Path 1989; 52: 19–27.

    Article  CAS  Google Scholar 

  16. Knight SC, FarrantJ, McGann LE. Storage of human lymphocytes by freezing in serum alone. Cryobiol 1977; 14: 112–5.

    Article  CAS  Google Scholar 

  17. Oliver RA, Springbett AJ, Spooner RL. A method for freezing bovine lymphocytes. Animal BI Gps and Biochem Gen 1984; 15: 213–7.

    Article  CAS  Google Scholar 

  18. Simon JD, Flinton LJ, Albala MM. A simple method for the cryopreservation of human lymphocytes at −18°C. Transfusion 1977; 17: 23–8.

    Article  PubMed  CAS  Google Scholar 

  19. Stopford CR, MacQueen JM, Amos DB, Ward FE. Some variation in lymphocyte freezing methods which do not affect cell viability. Tissue Antigens 1972; 2: 20–6.

    Article  PubMed  CAS  Google Scholar 

  20. Tate EG, Cram LS. A method for simultaneous isolation and cryopreservation of bovine lymphocytes. Cryobiol 1982; 19: 136–46.

    Article  CAS  Google Scholar 

  21. Thierry C, Valles H, Truc JM, Serron B. An efficient method for cryopreservation of human lymphocytes for immunological testing. Biomed 1976; 25: 82–4.

    CAS  Google Scholar 

  22. Williams E, Okoye R, Oilier B, Festenstein H. Letters to the editor. A simple box method for freezing lymphocytes. J Immunol Meth 1983; 65: 265–8.

    Article  CAS  Google Scholar 

  23. Birkeland SA. The influence of different freezing procedures and different cryoprotective agents on the immunological capacity of frozen-stored lymphocytes. Cryobiol 1976; 13: 442–7.

    Article  CAS  Google Scholar 

  24. Farrant J, Knight SC, Morris GJ. Use of different cooling rates during freezing to separate populations of peripheral blood lymphocytes. Cryobiol 1972; 9: 516–25.

    Article  CAS  Google Scholar 

  25. Thorpe PE, Knight SC, Farrant J. Optimal conditions for the preservation of mouse lymph node cells in liquid nitrogen using cooling rate technique. Cryobiol 1976; 13: 126–33.

    Article  CAS  Google Scholar 

  26. Glassman AB, Bennet CE. Cryopreservation of human lymphocytes: a brief review and evaluation of an automated liquid nitrogen freezer. Transfusion 1978; 19: 178–81.

    Article  Google Scholar 

  27. Mottram PL, McKimm-Breschkin JL, Miller JFAP. Liquid nitrogen storage of cultured T lymphocytes. J Immunol Meth 1985; 78: 207–10.

    Article  CAS  Google Scholar 

  28. Morbidity and Mortality Weekly Report (MMWR). Guidelines for prevention of transmission of human immonudeficiency virus and hepatitis B virus to health-care and public-safety workers. Centers for Disease Control, Atlanta, GA 1989;38:S-6.

    Google Scholar 

  29. Boyse EA, Old LJ, Chouroulinkov I. Cytotoxic test for demonstration of mouse antibody. Methods Med Res 1964; 10: 39–47.

    PubMed  CAS  Google Scholar 

  30. Karpovitch XL, Rosenkovitch E, Ben-Basset H, Izak G. Structure and functional alterations in lymphocytes induced by cryopreservation. Cryobiol 1980; 17: 12–7.

    Article  CAS  Google Scholar 

  31. Fahy GM. the relevance of cryoprotectant “toxicity” to cryobiology. Cryobiol 1986;23:1–13.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

van Assendelft, O.W., Jones, B.M., Stoddard, L., Kelly, T. (1990). Inexpensive Method for Cryopreservation of Human Peripheral Blood Lymphocytes. In: Smit Sibinga, C.T., Das, P.C., Meryman, H.T. (eds) Cryopreservation and low temperature biology in blood transfusion. Developments in Hematology and Immunology, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1515-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1515-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8814-5

  • Online ISBN: 978-1-4613-1515-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics