Skip to main content

Opioid Peptides: Possible Physiological Role as Endogenous Anticonvulsants

  • Chapter
Neurobiology of Amino Acids, Peptides and Trophic Factors

Part of the book series: Topics in the Neurosciences ((TINS,volume 8))

Abstract

Among the most poorly understood and possibly least appreciated pharmacological actions of opioids (morphine, its congeners, and the enkephalins, endorphins, and dynorphins) is their effect on central nervous system (CNS) excitability relative to seizure states. Clinical reports dating back to the turn of the century describe proconvulsant and anticonvulsant actions of morphine in man [1]. Experimentally, a similar paradox exists wherein the convulsant properties of opioids in numerous species were recognized as early as 1824, while their anticonvulsant actions have also been repeatedly documented since the nineteenth century [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krueger, H., Eddy, N.B. and Sumwalt, M. (eds.) (1941). The Pharmacology of the Opium Alkaloids, Supplement No. 165 to the Public Health Reports, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  2. Urca, G., Frenk, H., Liebeskind, J.C. and Taylor, A.N. (1977). Morphine and enkephalin: Analgesic and epileptic properties. Science 197, 83–86.

    Article  PubMed  CAS  Google Scholar 

  3. Frenk, H. (1983). Pro-and anticonvulsant actions of morphine and the endogenous opioids: Involvement and interactions of multiple opiate and non-opiate systems. Brain Res. Rev. 6, 197–210.

    Article  CAS  Google Scholar 

  4. Tortella, F.C., Cowan, A. and Adler, M.W. (1981). Comparison of the anticonvulsant effects of opioid peptides and etorphine in rats. Life Sci. 29, 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  5. Tortella, F.C., Cowan, A., Belenky, G.L. and Holaday, J.W. (1981). Opiate-like electro-encephalographic and behavioral effects of electroconvulsive shock in rats. Eur. J. Pharmacol. 76, 121–128.

    Article  PubMed  CAS  Google Scholar 

  6. Tortella, F.C., Long, J.B. and Holaday, J.W. (1985). Endogenous opioid systems: Physiological role in the self-limitation of seizures. Brain Res. 332, 174–178.

    Article  PubMed  CAS  Google Scholar 

  7. Tortella, F.C., Robles, L. and Holaday, J.W. (1985). The anticonvulsant effects of DADL are primarily mediated by activation of delta opioid receptors: Interactions between delta and mu receptor antagonists. Life Sci. 37, 497–503.

    Article  PubMed  CAS  Google Scholar 

  8. Tortella, F.C. and Cowan, A. (1982). Studies on the role of opioid peptides as endogenous anticonvulsants. Life Sci. 31, 2225–2228.

    Article  PubMed  CAS  Google Scholar 

  9. Kelsey, J.E. and Belluzi, J.D. (1982). Endorphin mediation of postictal effects of kindled seizures in rats. Brain Res. 253, 337–340.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, R.J. and Lomax, P. (1985). The effect of spontaneous seizures on pentylenetetrazole and maximal electroshock induced seizures in the mongolian gerbil. Eur. J. Pharmacol. 106, 91–96.

    Article  Google Scholar 

  11. Shavit, Y., Caldecott-Hazard, S. and Liebeskind, J.C. (1984). Activating endogenous opioid systems by electroconvulsive shock or footshock stress inhibits recurrent kindled seizures in rats. Brain Res. 305, 203–207.

    Article  PubMed  CAS  Google Scholar 

  12. Tortella, F.C. and Long, J.B. (1985). Endogenous anticonvulsant substance in rat cerebrospinal fluid after a generalized seizure. Science 228, 1106–1108.

    Article  PubMed  CAS  Google Scholar 

  13. Tortella, F.C., Long, J.B. and Liston, D. (1986). Endogenous opioid peptide-like substance: Physiological and molecular characterization of its properties. Soc. Neurosci. Abstr. 12, 776.

    Google Scholar 

  14. Rodolfi, R. (1855). Nuove osservazioni su l’ azione della stricnina. Gazz. Med. Ital. Lomb. 6, 61–63.

    Google Scholar 

  15. Beatty, T.C. (1871). Morphia as antidote to strychine (correspondence). Lancet 2, 907.

    Google Scholar 

  16. Berman, E.F. and Adler, M.W. (1984). The anticonvulsant effect of opioids and opioid peptides against maximal electroshock seizures in rats. Neuropharmacol. 23, 367–371.

    Article  CAS  Google Scholar 

  17. Puglisi-Allegr, S., Castellano, C, Csanyl, V., Doka, A. and Oliverio, A. (1984). Opioid antagonism of electroshock-induced seizures. Pharmacol. Biochem. Behav. 20, 767–769.

    Article  Google Scholar 

  18. Garant, D.S. and Gale, K. (1985). Infusion of opiates into substantia nigra protects against maximal electroshock seizures in rats. J. Pharmacol. Exp. Ther. 234, 45–48.

    PubMed  CAS  Google Scholar 

  19. Robles, L., Tortella, F.C. and Holaday, J.W. (1986). Anticonvulsant effects of the mu selective ligand DAGO in rats. Pharmacologist 28, 170.

    Google Scholar 

  20. Tortella, F.C., Robles, L., Holaday, J.W. and Cowan, A. (1983). A selective role for delta receptors in the regulation of opioid-induced changes in seizure threshold. Life Sci. 33, 603–606.

    Article  PubMed  CAS  Google Scholar 

  21. Tortella, F.C. and Holaday, J.W. (1987). Dynorphin (1–13): In vivo antagonist actions and non-opioid anticonvulsant effects in the rat flurothyl test. Natl. Inst. Drug Abuse Monograph, in press.

    Google Scholar 

  22. Baccelliere, L., Ferrillo, F., Montano, V.F., Rodriguez, G. and Rosadini, G. (1980). Inhibitory effects of met5-enkephaline on different models of experimental epilepsy. Acta. Neurol. Scand. 62 (Suppl. 79).

    Google Scholar 

  23. Plotnikoff, N.P., Kastin, A.J., Coy, D.H., Christensen, C.W., Schally, A.V. and Spirtes, M. A. (1976). Neuropharmacological actions of enkephalin after systemic administration. Life Sci. 19, 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  24. Meldrum, B.S., Menini, C, Stutzmann, J.M. and Naquet, R. (1979). Effects of opiate-like peptides, morphine, and naloxone in the photosensitive baboon, Papio Papio. Brain Res. 170, 333–348.

    Article  PubMed  CAS  Google Scholar 

  25. Meldrum, B.S. and Menini, C. (1981). Effect of morphine, enkephalins, beta-endorphin, and related compounds on seizure thresholds. In Neurotransmitters, Seizures, and Epilepsy, Morselli, P.L. et al, eds., Raven Press, New York, pp. 185–194.

    Google Scholar 

  26. Bajorek, J.G. and Lomax, P. (1982). Modulation of spontaneous seizures in the mongolian gerbil: Effects of beta-endorphin. Peptides 3, 83–86.

    Article  PubMed  CAS  Google Scholar 

  27. Albertson, T.E., Joy, R.M. and Stark, L.G. (1984). Modification of kindled amygdaloid seizures by opiate agonists and antagonists. J. Pharmacol. Exp. Ther. 228, 620–627.

    PubMed  CAS  Google Scholar 

  28. Caldecott-Hazard, S., Shavit, Y., Ackermann, R.F., Engel, J., Frederickson, R.C. and Liebeskind, J.C. (1982). Behavioral and electrographic effects of opioids on kindled seizures in rats. Brain Res. 251, 327–333.

    Article  PubMed  CAS  Google Scholar 

  29. McNamara, J.O., Rigsbee, L.C., Legg, S. and Galloway, M.T. (1983). Microinjection of dynorphin 1–13 into substantia nigra suppresses kindled seizures. Soc. Neurosci. Abst. 9, 485.

    Google Scholar 

  30. Holaday, J.W. and Tortella, F.C. (1984). Multiple opiate receptors: Possible physiological functions of mu and delta binding sites in vivo. In Central and Peripheral Endorphins: Basic and Clinical Aspects, Muller, E.E. and Genazzani, R. eds., Raven Press, New York, pp. 237–250.

    Google Scholar 

  31. Porreca, F., Mosberg, H.I., Hurst, R., Hruby, V.J. and Burks, T.F. (1984). Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J. Pharmacol. Exp. Ther. 230, 341–348.

    PubMed  CAS  Google Scholar 

  32. Tortella, F.C., Robles, L. and Mosberg, H.I. (1987). Evidence for mu-opioid receptor mediation of enkephalin-induced EEG seizures. J. Pharmacol. Exp. Ther., in press.

    Google Scholar 

  33. Lord, J.A., Waterfield, A.A., Hughes, J. and Kosterlitz, H.W. (1977). Endogenous opioid peptides: Multiple agonists and receptors. Nature 267, 495–499.

    Article  PubMed  CAS  Google Scholar 

  34. Chang, K.J. and Cuatrecasas, P. (1979). Multiple opiate receptors: Enkephalins and morphine bind to receptors of different specificity. J. Biol. Chem. 254, 2610–2618.

    PubMed  CAS  Google Scholar 

  35. Wuster, M., Schultz, R. and Herz, A. (1981). Multiple opiate receptors in peripheral tissue preparations. Biochem. Pharmacol. 30, 1883–1887.

    Article  PubMed  CAS  Google Scholar 

  36. James, I.F. and Goldstein, A. (1984). Site-directed alkylation of multiple opioid receptors. I. Binding selectivity. Mol. Pharmacol. 25, 337–342.

    PubMed  CAS  Google Scholar 

  37. Goldstein, A. and James, I.F. (1984). Site-directed alkylation of multiple opioid receptors. II. Pharmacological selectivity. Mol. Pharmacol. 30, 343–348.

    Google Scholar 

  38. Handa, B.K., Lane, A.C., Lord, J.A., Morgan, B.A., Rance, M.J. and Smith, CF. (1981). Analogs of beta-LPH61–64 possessing selective agonists at mu-opiate receptors. Br. J. Pharmacol. 70, 531–540.

    CAS  Google Scholar 

  39. Kosterlitz, H.W. and Paterson, S.J. (1981). TYR-D-ALA2-GLY-MePHE-NH(CH2)2 is a selective ligand for the mu opiate binding site. Br. J. Pharmacol. 73, 299P.

    Google Scholar 

  40. Takemori, A.E., Larson, D.L. and Portoghese, P.S. (1981). The irreversible narcotic antagonist and reversible agonist properties of the fumaramate ester methyl derivative of naltrexone. Eur. J. Pharmacol. 70, 445–451.

    Article  PubMed  CAS  Google Scholar 

  41. Shaw, J.S., Miller, L., Turnbull, M.J., Gormley, J.J. and Morley, J.S. (1982). Selective antagonists at the opiate delta-receptor. Life Sci. 31, 1259–1262.

    Article  PubMed  CAS  Google Scholar 

  42. Tortella, F.C., Robles, L., Holaday, J.W. and Cowan, A. (1984). ICI 154,129, a delta-opioid receptor antagonist raises seizure threshold in rats. Eur. J. Pharmacol. 97, 141–144.

    Article  PubMed  CAS  Google Scholar 

  43. Zajac, J.M., Gacel, G. Petit, F., Dodey, P. and Roques, B.P. (1983). Deltakephalin, TYR-D-THR-GLY-PHE-LEU-THR: A new highly potent and fully specific agonist for opiate delta receptors. Biochem. Biophys. Res. Commun. 111, 390–397.

    Article  PubMed  CAS  Google Scholar 

  44. Galligan, J.J., Mosberg, H.I., Hurst, R., Hruby, V.J. and Burks, T.F. (1984). Cerebral delta opioid receptors mediate analgesia but not the intestinal motility effects of intracerebroven-tricularly administered opioids. J. Pharmacol. Exp. Ther. 229, 641–648.

    PubMed  CAS  Google Scholar 

  45. Mosberg, H.I., Hurst, R., Hruby, V.J., Galligan, J.J., Burks, T.F., Gee, K. and Yamamura, H.I. (1983). Bis-penicillamine enkephalins show pronounced delta opioid receptor selectivity. Proc. Natl. Acad. Sci. USA 80, 6871–6874.

    Article  Google Scholar 

  46. Cotton, R., Giles, M.G., Miller, L., Shaw, J.S. and Timms, D. (1984). ICI 174,864: A highly selective antagonist for the opioid delta receptor. Eur. J. Pharmacol. 97, 331–332.

    Article  PubMed  CAS  Google Scholar 

  47. Von Voigtlander, P.F., Lahti, R.A. and Ludens, J.H. (1983). U-50,488: A selective and structurally novel non-mu (kappa) opioid agonist. J. Pharmacol. Exp. Ther. 224, 7–12.

    Google Scholar 

  48. Cowan, A., Geller, E.B. and Adler, M.W. (1979). Classification of opioids on the basis of change in seizure threshold in rats. Science 206, 465–467.

    Article  PubMed  CAS  Google Scholar 

  49. Tortella, F.C., Robles, L. and Holaday, J.W. (1985). U50,488, a highly selective kappa opioid: Anticonvulsant profile in rats. J. Pharmacol. Exp. Ther. 237, 49–53.

    Google Scholar 

  50. Chavkin, C, James, I.F. and Goldstein, A. (1982). Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215, 413–415.

    Article  PubMed  CAS  Google Scholar 

  51. Lee, N.M. and Smith, A.P. (1984). Possible regulatory function of dynorphin and its clinical implications. TIPS 5, 108–110.

    CAS  Google Scholar 

  52. Tortella, F.C., Robles, L. and Holaday, J.W. (1985). Seizure threshold studies with dynorphin (1–13) in rats: Possible interactions among kappa, mu and delta opioid binding sites. Pharmacologist 27, 179.

    Google Scholar 

  53. Duggan, A.W. and North, R.A. (1984). Electrophysiology of opioids. Pharmacol. Rev. 35, 219–281.

    Google Scholar 

  54. Tortella, F.C., Moreton, J.E. and Khazan, N. (1978). Electroencephalographic and behavioral effects of D-ala2-methionine-enkephalinamide and morphine in the rat. J. Pharmacol. Exp. Ther. 206, 636–643.

    PubMed  CAS  Google Scholar 

  55. Tortella, F.C., Moreton, J.E. and Khazan, N. (1979). Electroencephalographic and behavioral tolerance to and cross-tolerance between D-ala2-methionine-enkephalinamide and morphine in the rat. J. Pharmacol. Exp. Ther. 210, 174–179.

    PubMed  CAS  Google Scholar 

  56. Moreton, J.E., Tortella, F.C. and Khazan, N. (1978). EEG and behavioral effects of acute and chronic administration of opiate-like peptides in the rat. Dev. Neurosci. 4, 435–436.

    CAS  Google Scholar 

  57. Henriksen, S.J., Bloom, F.E., McCoy, F., Ling, N. and Guillemin, R. (1978). Beta-endorphin induces nonconvulsive limbic seizures. Proc. Natl. Acad. Sci. USA 75, 5221–5225.

    Article  PubMed  CAS  Google Scholar 

  58. Tortella, F.C., Robles, L., Mosberg, H.I. and Holaday, J.W. (1984). Electroencephalographic assessment of the role of delta receptors in opioid peptide-induced seizures. Neuropeptides 5, 213–216.

    Article  PubMed  CAS  Google Scholar 

  59. Tortella, F.C., Robles, L., Mosberg, H.I. and Holaday, J.W. (1985). Electroencephalographic characterization of mu and delta opioid receptor activity in rats. Soc. Neurosci. Abst. 11, 308.

    Google Scholar 

  60. Montplaisir, J., Saint-Hilaire, J.M., Walsh, J.T., Laverdiere, M. and Bouvier, G. (1981). Naloxone and focal epilepsy: A study with depth electrodes. Neurology 31. 350–352.

    PubMed  CAS  Google Scholar 

  61. Engel, J., Ackermann, R.F., Caldecott-Hazard, S. and Chugani, H.T. (1984). Do altered opioid mechanisms play a role in human epilepsy? In Neurotransmitters, seizures, and epilepsy II. Fanello, R.G., Morselli, P.L., Lloyd, K.G., eds., Raven Press, New York, pp. 263–272.

    Google Scholar 

  62. Snead, O.C. (1986). Neuropeptides and seizures. Neurologic Clin. 4, 863–875.

    Google Scholar 

  63. Emrich, H.M., Hollt, H., Laspe, M., Fischler, M., Heinemann, H., Kissling, W. Zersen, D. V. and Herz, A. (1979). Studies on possible pathological significance of endorphins in psychiatric disorders. In Neuropsychopharmacology, Saletu, B., Berner, P. and Hollister, L., eds., Pergamon Press, New York, pp. 527–534.

    Google Scholar 

  64. Costa, E. and Trabucchi, M. (1980). Neural peptides and neural communication. Adv. Bio-chem. Psychopharmacol. 22, 435–563.

    Google Scholar 

  65. Holaday, J.W. and Loh, H.H. (1981). Neurobiology of beta-endorphin and related peptides. In Hormonal Proteins and Peptides: Beta-endorphin, Li, C.H., ed., Academic Press, New York, pp. 202–291.

    Google Scholar 

  66. Belenky, G.L. and Holaday, J.W. (1979). The opiate antagonist naloxone modifies the effects of electroconvulsive shock (ECS) on respiration, blood pressure and heart rate. Brain Res. 177, 414–417.

    Article  PubMed  CAS  Google Scholar 

  67. Holaday, J.W. and Belenky, G.L. (1980). Opiate-like effects of electroconvulsive shock in rats: A differential effect of naloxone on nociceptive measures. Life Sci. 27, 1929–1938.

    Article  PubMed  CAS  Google Scholar 

  68. Belenky, G.L., Tortella, F.C., Hitzemann, R.J. and Holaday, J.W. (1984). The role of endorphin systems in the effects of ECS. In ECT: Basic Mechanisms, Lerer, B., Weiner, R.D. and Belmaker, R.H., eds., John Libby & Co., Bondway, London, pp. 89–97.

    Google Scholar 

  69. Tortella, F.C., Cowan, A. and Holaday, J.W. (1984). Pituitary endorphin involvement in electroconvulsive shock-induced postictal electrogenesis and behavioral depression in rats. Peptides 5, 115–118.

    Article  PubMed  CAS  Google Scholar 

  70. Cowan, A. and Tortella, F.C. (1982). A quantitative analysis of the shaking behavior induced in rats by beta-endorphin and D-ala2-met-enkephalinamide. Life Sci. 30, 171–176.

    Article  PubMed  CAS  Google Scholar 

  71. Tortella, F.C. and Cowan, A. (1982). EEG, EMG and behavioral evidence for the involvement of endorphin systems in postictal events after electroconvulsive shock in rats. Life Sci. 31, 881–888.

    Article  PubMed  CAS  Google Scholar 

  72. Katz, R.J. and Schmaltz, K. (1980). Reduction of opiate activation after chronic electroconvulsive shock: Possible role for endorphins in the behavioral effects of convulsive shock treatment. Neurosci. Lett. 19, 85–91.

    Article  PubMed  CAS  Google Scholar 

  73. Urca, G., Nof, A., Weissman, B.A. and Same, Y. (1983). Analgesia induced by electroconvulsive shock: Brain enkephalins may mediate tolerance but not the induction of analgesia. Brain Res. 260, 271–277.

    Article  PubMed  CAS  Google Scholar 

  74. Belenky, G.L. and Holaday, J.W. (1981). Repeated electroconvulsive shock (ECS) and morphine tolerance: Demonstration of cross-sensitivity in the rat. Life Sci. 29, 553–563.

    Article  PubMed  CAS  Google Scholar 

  75. Green, A.R., Peralta, E., Hong, J.S., Mao, C.C., Atterwill, CK. and Costa, E. (1978). Alterations in GABA metabolism, and met-enkephalin content in rat brain following repeated electroconvulsive shocks. J. Neurochem. 31, 607–611.

    Article  PubMed  CAS  Google Scholar 

  76. Hong, J.S., Wood, P.L., Gillen, J.C., Yang, H.-Y.T. and Costa, E. (1980). Changes of hippocampal met-enkephalin content after recurrent motor seizures. Nature (Lond.) 285, 231–232.

    Article  CAS  Google Scholar 

  77. Vindrola, O., Briones, R., Asai, M. and Fernandez-Guardiola, A. (1981). Amygdaloid kindling enhances the enkephalin content in the rat brain. Neurosci. Lett. 21, 39–43.

    Article  PubMed  CAS  Google Scholar 

  78. Same, Y., Weissman, G. and Urca, G. (1982). Differential effects of long-term electroconvulsive shock on brain levels of enkephalin and humoral-endorphin. J. Neurochem. 39, 1478–1480.

    Article  Google Scholar 

  79. Przewlocki, R., Lason, W., Stach, R. and Kacz, D. (1983). Opioid peptides, particularly dynorphin, after amygdaloid-kindled seizures. Regul. Peptides 6, 385–392.

    Article  CAS  Google Scholar 

  80. McGinty, J.F., Kanamatsu, T., Obie, J., Dyer, R.S., Mitchell, C.L. and Hong, J.S. (1986). A mygdaloid kindling increases enkephalin-like immunoreactivity but decreases dynorphin-A-like immunoreactivity in rat hippocampus. Neurosci. Lett. 71, 31–36.

    Article  PubMed  CAS  Google Scholar 

  81. Holaday, J.W., Tortella, F.C., Long, J.B., Belenky, G.L. and Hitzemann, R.J. (1986). Endogenous opioids and their receptors: Evidence for involvement in the postictal effects of electroconvulsive shock. In Electroconvulsive Therapy: Clinical and Basic Research Issues, Malitz, S. and Sackeim, H.A., eds., Ann. New York Acad. Sci. 462, 124–139.

    Google Scholar 

  82. Malitz, S. and Sackeim, H.A. (eds.) (1986). In Electroconvulsive Therapy: Clinical and Basic Research Issues, New York Acad. Sci. 462, 76–172.

    Google Scholar 

  83. Dragunow, M. (1986). Endogenous anticonvulsant substances. Neurosci. Biobehav. Rev. 10, 229–244.

    Article  PubMed  CAS  Google Scholar 

  84. Essig, CF. and Flanary, H.G. (1966). The importance of the convulsion in occurrence and rate of development of electroconvulsive threshold elevation. Exp. Neurol. 14, 448–452.

    Article  PubMed  CAS  Google Scholar 

  85. Herberg, L.J., Trees, K.H. and Blundell, J.E. (1969). Raising the threshold in experimental epilepsy by hypothalamic and septal stimulation and by audiogenic seizures. Brain 92, 313–328.

    Article  PubMed  CAS  Google Scholar 

  86. Ramer, D. and Pinel, J.P. (1976). Progressive intensification of motor seizures produced by periodic electroconvulsive shock. Exp. Neurol. 51, 421–433.

    Article  PubMed  CAS  Google Scholar 

  87. Mucha, R.F. and Pinel, J.P. (1977). Postseizure inhibition of kindled seizures. Exp. Neurol. 54, 266–282.

    Article  PubMed  CAS  Google Scholar 

  88. Sainsbury, R.S., Bland, B.H. and Buchan, D.H. (1978). Electrically induced seizure activity in the hippocampus: Time course for postseizure inhibition of subsequent kindled seizures. Behav. Biol. 22, 479–488.

    Article  PubMed  CAS  Google Scholar 

  89. Handforth, A. (1982). Postseizure inhibition of kindled seizures by electroconvulsive shock. Exp. Neurol. 78, 483–491.

    Article  PubMed  CAS  Google Scholar 

  90. Kalinowsky, L.B. and Kennedy, F. (1943). Observations in electric shock therapy applied to problems of epilepsy. J. Nerv. Ment, Dis. 98, 56–67.

    Article  Google Scholar 

  91. Holmberg, G. (1954). Effect on electrically induced convulsions of the number of previous treatments in a series. Arch. Neurol. Psychiat. 71, 619–623.

    CAS  Google Scholar 

  92. Long, J.B. and Tortella, F.C. (1987). Effects of adrenalectomy and hypophysectomy on postictal seizure protection. Brain Res., in press.

    Google Scholar 

  93. Lewin, E. and Bleck, V. (1985). Effect of inosine on seizures induced with metrazol, bicu-culline, or picrotoxin. Epilepsia 26, 258–261.

    Article  PubMed  CAS  Google Scholar 

  94. Ferrendelli, J.A. (1980). Epilepsy and cyclic nucleotides. Adv. Cyclic Neucleotide Protein Phosphorylation Res. 12, 199–211.

    CAS  Google Scholar 

  95. Meldrum, B. (1984). Amino acid neurotransmitters and new approaches to anticonvulsant drug action. Epilepsia 25, S140–S149.

    Article  PubMed  CAS  Google Scholar 

  96. Ferrendelli, J.A. (1984). Roles of biogenic amines and cyclic nucleotides in seizure mechanisms. Ann. Neurol. 16, S98–S103.

    Article  CAS  Google Scholar 

  97. Forstermann, U., Heldt, R., Knappen, F. and Hertting, G. (1982). Potential anticonvulsive properties of endogenous prostaglandins formed in mouse brain. Brain Res. 240, 303–310.

    Article  PubMed  CAS  Google Scholar 

  98. Bajorek, J.G., Lee, R.J. and Lomax, P. (1984). Neuropeptides: A role as endogenous mediators or modulators of epileptic phenomena. Ann. Neurol. 16, S31–S38.

    Article  PubMed  CAS  Google Scholar 

  99. Long, J.B., Molineaux, C.J. and Tortella, F.C. (1985). Further characterization of an endogenous opioid anticonvulsant: Measurement of opioid peptide immunoreactivity in rat cerebrospinal fluid following a generalized seizure. Soc. Neurosci. Abst. 11, 468.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tortella, F.C. (1988). Opioid Peptides: Possible Physiological Role as Endogenous Anticonvulsants. In: Ferrendelli, J.A., Collins, R.C., Johnson, E.M. (eds) Neurobiology of Amino Acids, Peptides and Trophic Factors. Topics in the Neurosciences, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1721-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1721-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8969-2

  • Online ISBN: 978-1-4613-1721-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics