Skip to main content

Dietary Protein and Experimental Carcinogenesis

  • Chapter
Essential Nutrients in Carcinogenesis

Abstract

This review summarizes selected information about the influence of proteins, protein-fat interactions, and calorie intake on carcinogenesis. Most of the definitive studies concerning protein and cancer have utilized protein underfeeding and feed restriction. Optimal or less than optimal protein intakes have generally inhibited spontaneous and chemically induced tumor growth as well as the growth of transplantable tumors. Studies have focused on the quantity of protein and its amino acid supply rather than its source. Raising protein intake increases carcinogen metabolizing capacity, and the incidence of tumors depends upon the biologic activity of the metabolites that are formed. The few published studies dealing with the effects of protein on chemically induced colon, mammary, and liver cancers show that the incidence varied with the carcinogen and the level of protein fed at the time of carcinogen administration. With 1,2-dimethyl-hydrazine, a colon cancer-inducing agent, the toxic and tumorigenic responses have varied with the route of administration, the level of protein fed, and the level and duration of exposure to the carcinogen. In some instances, high protein diets may have led to a lower incidence of tumors because of depressed feed intake, a known confounding factor. The existing data about the relation of protein to cancer make generalizations about mechanisms hazardous because experimental models and protocols have varied widely. Some early studies undoubtedly used diets that lacked nutrients now known to be essential. Unfortunately, some recent studies have overlooked established nutritional principles and the known nutritional requirements appropriate for the age and species of animals used as models.

Research conducted in the author’s laboratory was supported by U.S. Public Health Service grants CA22326‚ CA29629‚ and A. M. 28026; Environmental Toxicology Training Grant Number ES0700-17; and NCI Contract No. NCI CP75899.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DMH:

1,2-dimethylhydrazine

PAH:

polycyclic aromatic hydrocarbons

AOM:

azoxyraethane

MAM:

methylazoxymethanol

AM:

azomethane

DMBA:

7,12-dimethylbenz(a)anthracene

AHH:

aryl hydrocarbon hydroxylase

AFB1 :

aflatoxin B1

References

  1. B. Armstrong and R. Doll, Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices, Int. J. Cancer 15:617 (1975).

    Article  CAS  Google Scholar 

  2. O. Gregor, R. Toman, and F. Prusova, Gastrointestinal cancer and nutrition, Gut 10:1031 (1969).

    Article  CAS  Google Scholar 

  3. D. G. Jose, Dietary deficiency of protein, amino acids and total calories on development and growth of cancer, Nutr. Cancer 1:58 (1979).

    Article  CAS  Google Scholar 

  4. C. Moreschi, Beziehungen Zwischen Ernahrung und Tumorwachstein, Z. Immunitaetsforsch. Immunobiol. 2:651 (1909) (in German).

    Google Scholar 

  5. P. Rous, The influence of diet on transplanted and spontaneous mouse tumours, J. Exp. Med. 20:433 (1914).

    Article  CAS  Google Scholar 

  6. P. Rous, Sarcoma of fowl transmissible by an agent separable from the tumour cells, J. Exp. Med. 13:397 (1911).

    Article  CAS  Google Scholar 

  7. A. Tannenbaum, Nutrition and cancer, in: “The Physiopathology of Cancer, 2nd ed.,” F. Homburger, ed., Paul A. Hoeber, New York (1959).

    Google Scholar 

  8. Committee on Diet, Nutrition, and Cancer, Assembly of Life Sciences, National Academy of Sciences, “Diet, Nutrition, and Cancer,” National Academy Press, Washington, D.C. (1982).

    Google Scholar 

  9. A. E. Harper, Proteins and amino acids: Effects of deficiencies and of specific amino acids, this volume, 10. L. A. Poirier, The role of methionine in carcinogenesis in vivo, this volume.

    Google Scholar 

  10. H. Sidransky, Role of tryptophan in carcinogenesis, this volume.

    Google Scholar 

  11. C. Laberge, A. Lescault, and R. M. Tanguay, Hereditary tyrosinemias (Type I): A new vista on tyrosine toxicity and cancer, this volume.

    Google Scholar 

  12. A. K. Ghoshal, D. S. R. Sarma, and E. Farber, Ethionine in the analysis of the possible separate roles of methionine and choline deficiency in carcinogenesis, this volume.

    Google Scholar 

  13. G. L. Laqueur, O. Michaelsen, M. G. Whiting, et al., Carcinogenic properties of nuts from Cycas circinalis, J. Natl. Cancer Inst. 31:919 (1963).

    CAS  Google Scholar 

  14. H. Druckrey, R. Preussman, F. Matzkies, et al., Selektive Erzlugung von Darmkrelis bei Ratten durch 1,2-dimethylhydrazin, Naturwissenschaften 54:285 (1967) (in German).

    Article  CAS  Google Scholar 

  15. A. E. Rogers, B. J. Herndon, and P. M. Newbeme, Induction by dimethylhydrazine of intestinal carcinoma in normal rats and rats fed high or low levels of vitamin A, Cancer Res. 33:1003 (1973).

    CAS  Google Scholar 

  16. B. S. Reddy, T. Narisawa, P. Wright, et al., Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats, Cancer Res. 35:287 (1975).

    CAS  Google Scholar 

  17. K. M. Pozharisski, A. J. Likhachev, V. F. Klimaschevski, et al., Experimental intestinal cancer research with special reference to human pathology, Cancer Res. 30:165 (1979).

    Article  CAS  Google Scholar 

  18. B. Wiebecke, U. Lohrs, J. Gimmy, et al., Erzeugung von Darmtunoren bei Mausen durch 1,2-dimethylhydrazin, Z. Gesamte Exp. Med. 149:277 (1969) (in German).

    Article  CAS  Google Scholar 

  19. N. Thurnherr, E. E. Deschner, E. Stonehill, et al., Induction of adenocarcinomas of the colon in mice by weekly injections of 1,2-dimethylhydrazine, Cancer Res. 33:940 (1973).

    CAS  Google Scholar 

  20. H. Osswald and F. W. Kruger, Die Cancerogene Wirkung von 1,2-Dimethylhydrazine beim Goldhamster, Arzneim. Forsch. 19:1891 (1969) (in German).

    CAS  Google Scholar 

  21. R. Doll, The geographical distribution of cancer, Br. J. Cancer 23:1 (1969).

    Article  CAS  Google Scholar 

  22. M. J. Hill, Lipids, intestinal flora, and large bowel cancer, in: “Dietary Fats and Health,” E. G. Perkins and W. J. Visek, eds., American Oil Chemists Society, Champaign, 111. (1983).

    Google Scholar 

  23. B. S. Drasar and D. Irving, Environmental factors and cancer of the colon and breast, Br. J. Cancer 27:167 (1973).

    Article  CAS  Google Scholar 

  24. D. C. Topping and W. J. Visek, Nitrogen intake and tumorigenesis in rats injected with 1,2-dimethylhydrazine, J. Nutr. 106:1583 (1976).

    CAS  Google Scholar 

  25. F. W. Kari, J. P. Johnston, C. R. Truex, et al., Effect of dietary protein concentration on yield of mutagenic metabolites from 1,2-dimethylhydrazine in mice, Cancer Res. 43:3674 (1983).

    CAS  Google Scholar 

  26. J. M. Ward, Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats, Lab. Invest. 30:505 (1974).

    CAS  Google Scholar 

  27. W. Lijinsky and P. Shubik, Benzo(a)pyrene and other polynuclear hydrocarbons in charcoal-broiled meat, Science 145:53 (1964).

    Article  CAS  Google Scholar 

  28. J. McCann, N. Spingarm, J. Kobori, et al., Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids, Proc. Natl. Acad. Sci. U.S.A. 72:979 (1975).

    Article  CAS  Google Scholar 

  29. L. Diamond, C. Sardet, and G. Rothblat, The metabolism of 1,2-dimethylbenz(a)anthracene in cell cultures, Int. J. Cancer 3:838 (1968).

    Article  CAS  Google Scholar 

  30. A. Haddow, Chemical causation of cancer then and today, Perspect. Biol. Med. 17:543 (1974).

    CAS  Google Scholar 

  31. International Agency for Research on Cancer, World Health Organization, “Evaluation of Carcinogenic Risk of Chemicals to Man, vol. 3,” World Health Organization, Lyon (1973).

    Google Scholar 

  32. R. Montesano, U. Saffiotti, A. Ferrero, et al., Synergistic effects of benzo(a)pyrene and diethylnitrosamine on respiratory carcinogenesis in hamsters, J. Natl. Cancer Inst. 53:1395 (1974).

    CAS  Google Scholar 

  33. J. Nieman, The sensitizing carcinogenic effect of small doses of carcinogen, Eur. J. Cancer 4:537 (1968).

    Article  Google Scholar 

  34. S. K. Clinton, R. J. Destree, D. B. Anderson, et al., 1,2-Dimethyl-hydrazine-induced intestinal cancer in rats fed beef or soybean protein, Nutr. Rep. Int. 20:335 (1979).

    CAS  Google Scholar 

  35. K. K. Carroll, Experimental evidence of dietary factors and hormone-dependent cancers, Cancer Res. 35:3374 (1975).

    CAS  Google Scholar 

  36. B. N. Ames, F. D. Lee, and W. E. Durston, An improved bacterial test system for the detection and classification of mutagens and carcinogens, Proc. Natl. Acad. Sci. U.S.A. 70:782 (1973).

    Article  CAS  Google Scholar 

  37. E. S. Fiala, Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane, Cancer 40:2436 (1977).

    Article  CAS  Google Scholar 

  38. H. T. Nagasawa and N. Shirota, Decomposition of methylazoxymethanol, the aglycone of cycasin, in D2O, Nature 236:234 (1972).

    Article  CAS  Google Scholar 

  39. Report of the American Institute of Nutrition Ad Hoc Committee on Standards for Nutritional Studies, J. Nutr. 107:1340 (1977).

    Google Scholar 

  40. Second Report of the American Institute of Nutrition Ad Hoc Committee on Standards for Nutritional Studies, J. Nutr. 110:1726 (1980).

    Google Scholar 

  41. P. Hevia, C. R. Truex, P. B. Imrey, et al., Plasma amino acids and excretion of protein end products by mice fed 10% or 40% soybean protein diets with or without dietary 2-acetyl-aminofluorene or N-N-dinitrosopiperazine, J. Nutr. 114:555 (1984).

    CAS  Google Scholar 

  42. P. A. Anderson, J. M. Alster, S. K. Clinton, et al., Plasma amino acids and excretion of protein end products by mice fed 10% or 40% soybean protein diets with or without dietary benzo(a)pyrene or 1,2-dimethylhydrazine, J. Nutr. 115:1515 (1985).

    CAS  Google Scholar 

  43. M. Hill, R. MacLennan, and K. Newcombe, Diet and large bowel cancer in three socioeconomic groups in Hong Kong, Lancet 1:436 (1979).

    Article  CAS  Google Scholar 

  44. B. Reddy, Nutrition and colon cancer, Adv. Nutr. Res. 2:199–218 (1979).

    CAS  Google Scholar 

  45. M. J. Hill, B. S. Drasar, V. Aries, et al., Bacteria and aetiology of cancer of large bowel, Lancet 1:95–100 (1971).

    Article  CAS  Google Scholar 

  46. B. S. Reddy, S. Mangat, A. Sheinfil, et al., Effect of type and amount of dietary fat and 1,2-dimethylhydrazine on biliary acids, fecal bile acids, and neutral sterols in rats, Cancer Res. 37:2132–2137, (1977).

    CAS  Google Scholar 

  47. B. I. Cohen, R. F. Raicht, E. E. Deschner, et al., Effects of bile acids on induced colon cancer in rats, Proc. Am. Assoc. Cancer Res., Am. Soc. Clin. Oncol. 19:48 (1978).

    Google Scholar 

  48. B. Toth and R. B. Wilson, Blood vessel tumorigenesis by 1,2-dimethylhydrazine dihydrochloride (symmetrical), Am. J. Pathol. 64:585 (1971).

    CAS  Google Scholar 

  49. A. Tannenbaum and H. Silverstone, The genesis and growth of tumors. IV. Effects of varying the proportion of protein (casein) in the diet, Cancer Res. 9:162 (1949).

    CAS  Google Scholar 

  50. M. H. Ross and G. Bras, Influence of protein under-and overnutrition on spontaneous tumor prevalence in the rat, J. Nutr. 103:944 (1973).

    CAS  Google Scholar 

  51. H. Shay, M. Gruenstein, and M. B. Shimkin, Effect of casein, lactalbumin, and ovalbumin on 3-methylcholanthrene-induced mammary carcinoma in rats, J. Natl. Cancer Inst. 33:243 (1964).

    CAS  Google Scholar 

  52. E. J. Hawrylewicz, H. H. Huang, J. Q. Kissane, et al., Enhancement of 7,12-dimethylbenz(a)anthracene (DMBA) mammary tumorigenesis by high dietary protein in rats, Nutr. Rep. Int. 26:793 (1982).

    CAS  Google Scholar 

  53. R. W. Engel and D. H. Copeland, The influence of dietary casein level on tumor induction with 2-acetylaminofluorene, Cancer Res. 12:905 (1952).

    CAS  Google Scholar 

  54. S. K. Clinton, C. R. Truex, and W. J. Visek, Dietary protein, aryl hydrocarbon hydroxylase and chemical carcinogenesis in rats, J. Nutr. 109:55 (1979).

    CAS  Google Scholar 

  55. S. K. Clinton, P. B. Imrey, J. M. Alster, et al., The combined effects of dietary protein and fat on 7,12-dimethylbenz(a) anthracene-induced breast cancer in rats, J. Nutr. 114:1213 (1984).

    CAS  Google Scholar 

  56. A. Tannenbaum, The dependence of tumor formation on the degree of caloric restriction, Cancer Res. 5:609 (1945).

    CAS  Google Scholar 

  57. H. H. Huang, E. J. Hawrylewicz, J. Q. Kissane, et al., Effect of protein on release of prolactin and ovarian steroids in female rats, Nutr. Rep. Int. 26:807 (1982).

    CAS  Google Scholar 

  58. H. Silverstone and A. Tannenbaum, Proportion of dietary protein and the formation of spontaneous hepatomas in the mouse, Cancer Res. 11:442 (1951).

    CAS  Google Scholar 

  59. M. H. Ross and G. Bras, Tumor incidence patterns and nutrition in the rat, J. Nutr. 87:245 (1965).

    CAS  Google Scholar 

  60. M. H. Ross, G. Bras, and M. S. Ragbeer, Influence of protein and caloric intake upon spontaneous tumor incidence of the anterior pituitary gland of the rat, J. Nutr. 100:177 (1970).

    CAS  Google Scholar 

  61. M. H. Ross, E. D. Lustbader, and G. Bras, Body weight, dietary practices, and tumor susceptibility, J. Natl. Cancer Inst. 71:1041 (1983).

    CAS  Google Scholar 

  62. T. V. Madhavan and C. Gopalan, The effect of dietary protein on carcinogenesis of aflatoxin, Arch. Pathol. 85:133 (1968).

    CAS  Google Scholar 

  63. P. Wells, L. Alftergood, and R. B. Alfin-Slater, Effect of varying levels of dietary protein on tumor development and lipid metabolism in rats exposed to aflatoxin, J. Am. Oil Chem. Soc. 53:559 (1976).

    Article  CAS  Google Scholar 

  64. P. Teracharoen, T. Anukarahanonta, and N. Bhamarapravati, Influence of dietary protein and vitamin B12 on the toxicity and carcinogenicity of aflatoxins in rat liver, Cancer Res. 38:2185 (1978).

    Google Scholar 

  65. T. V. Madhavan and C. Gopalan, Effect of dietary protein on aflatoxin liver injury in weanling rats, Arch. Pathol. 80:123 (1965).

    CAS  Google Scholar 

  66. M. U. K. Mgbodile and T. C. Campbell, Effect of protein deprivation of male weanling rats on the kinetics of hepatic microsomal enzyme activity, J. Nutr. 102:53 (1972).

    CAS  Google Scholar 

  67. R. S. Preston, J. R. Hayes, and T. C. Campbell, The effect of protein deficiency on the in vitro binding of aflatoxin B1 to rat liver macromolecules, Life Sci. 19:1191 (1976).

    Article  CAS  Google Scholar 

  68. T. C. Campbell, Influence of nutrition on metabolism of carcinogens, Adv. Nutr. Res. 2:29 (1979).

    CAS  Google Scholar 

  69. B. S. Appleton and T. C. Campbell, Effects of dietary protein level and phenobarbital (PB) on aflatoxin (AFB1)-induced hepatic γ-glutamyl transpeptidase (GGT) in the rat, Fed. Proc. 40:842 (1981).

    Google Scholar 

  70. M. A. Walters and F. J. C. Roe, The effect of dietary casein on the induction of lung tumours by the injection of 9,10-dimethyl-1,2-benzanthracene (DMBA) into newborn mice, Br. J. Cancer 18:312 (1964).

    Article  CAS  Google Scholar 

  71. L. A. Elson, Some dynamic aspects of chemical carcinogenesis, Br. Med. Bull. 14:161 (1958).

    CAS  Google Scholar 

  72. J. A. Miller, D. L. Miner, H. P. Rusch, et al., Diet and hepatic tumor formation, Cancer Res. 1:699 (1941).

    CAS  Google Scholar 

  73. H. Silverstone, The levels of carcinogenic azo dyes in the livers of rats fed various diets containing p-dimethylaminoazobenzene: Relationship to the formation of hepatomas, Cancer Res. 8:301 (1948).

    CAS  Google Scholar 

  74. J. White, F. R. White, and M. B. Mider, Effect of diets deficient in certain amino acids on the induction of leukemia in DBA mice, J. Natl. Cancer Inst. 7:199 (1947).

    CAS  Google Scholar 

  75. H. B. Haley and M. B. Williamson, Growth of tumors in experimental wounds (Abstract), Proc. Am. Assoc. Cancer Res. 3:116 (1960).

    Google Scholar 

  76. A. L. Babson, Some host-tumor relationships with respect to nitrogen, Cancer Res. 14:89 (1954).

    CAS  Google Scholar 

  77. F. Devik, L. A. Elson, P. C. Koller, et al., Influence of diet on Walker rat carcinoma 256, and its response to X-radiation-Cytological and histological investigations, Br. J. Cancer 4:298 (1950).

    Article  CAS  Google Scholar 

  78. D. G. Jose and R. A. Good, Quantitative effects of nutritional essential amino acid deficiency upon immune responses to tumors in mice, J. Exp. Med. 137:1 (1973).

    Article  CAS  Google Scholar 

  79. F. R. White, The relationship between underfeeding and tumor formation, transplantation, and growth in rats and mice, Cancer Res. 21:281 (1961).

    CAS  Google Scholar 

  80. National Academy of Sciences, “Nutrient Requirements of Laboratory Animals, 3rd ed.,” National Academy Press, Washington, D.C. (1978).

    Google Scholar 

  81. T. C. Campbell and J. R. Hayes, Role of nutrition in the drug-metabolizing enzyme system, Pharmacol. Rev. 26:171 (1974).

    CAS  Google Scholar 

  82. T. C. Campbell, Nutritional modulation of carcinogenesis, in: “Molecular Interrelations of Nutrition and Cancer,” M. S. Arnott, J. van Eys, and Y. M. Wang, eds., Raven Press, New York (1982).

    Google Scholar 

  83. Y. B. Mikol, K. L. Hoover, D. Creasia, et al., Hepatocarcinogenesis in rats fed methyl-deficient amino acid-defined diet, Carcinogenesis 4:1619 (1983).

    Article  CAS  Google Scholar 

  84. T. Lindahl, DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair, Prog. Nucl. Acid Res. Mol. Biol. 22:135 (1979).

    Article  CAS  Google Scholar 

  85. P. M. Rao, Y. Nagamine, M. Waheed Roomi, et al., Orotic acid, a new promoter for experimental liver carcinogenesis, Toxicol. Pathol. 12:173 (1984).

    Article  CAS  Google Scholar 

  86. C. Laurier, M. Tatematsu, P. M. Rao, et al., Promotion by orotic acid of liver carcinogenesis in rats initiated by 1,2-dimethyl-hydrazine, Cancer Res. 44:2186 (1984).

    CAS  Google Scholar 

  87. D. Kritchevsky and D. J. Klurfeld, Influence of caloric intake on experimental carcinogenesis: A review, this volume.

    Google Scholar 

  88. D. V. M. Ashley and G. H. Anderson, Correlation between the plasma tryptophan to neutral amino acid ratio and protein intake in the self-selecting weanling rat, J. Nutr. 105:1412 (1975).

    CAS  Google Scholar 

  89. A. E. Harper, N. J. Benevenga, and R. M. Wohlhueter, Effects of ingestion of disproportionate amounts of amino acids, Physiol. Rev. 50:428 (1970).

    CAS  Google Scholar 

  90. L. W. Wattenberg, W. D. Loub, L. K. Lam, et al., Dietary constituents altering the response to chemical carcinogens, Fed. Proc. 35:1327 (1976).

    CAS  Google Scholar 

  91. L. W. Wattenberg, Effects of dietary constituents on the metabolism of chemical carcinogens, Cancer Res. 35:3526 (1975).

    Google Scholar 

  92. A. Somogyi, K. Kovacs, R. Kuntzman, et al., Suppression of 7,12-dimethylbenz(a)anthracene produced arenal necrosis by steroids capable of inducing aryl hydrocarbon hydroxylase, Life Sci. 10:1261 (1971).

    Article  CAS  Google Scholar 

  93. P. M. Newberne, D. H. Harrington, and G. N. Wogan, Effects of cirrhosis and other liver insults on the induction of liver tumors by aflatoxin in rats, Lab. Invest. 15:962 (1966).

    CAS  Google Scholar 

  94. B. N. Ames, Dietary carcinogens and anticarcinogens, Science 221: 1256 (1983).

    Article  CAS  Google Scholar 

  95. T. Sugimura, Naturally occurring genotoxic carcinogens, in: “Naturally Occurring Carcinogens--Mutagens and Modulators of Carcinogenesis,” E. C. Miller, J. A. Miller, I. Hirono, et al., eds., University Park Press, Baltimore, Md. (1979).

    Google Scholar 

  96. H. Greenfield and G. M. Briggs, Nutritional methodology in metabolic research with rats, Annu. Rev. Biochem. 40:549 (1971).

    Article  CAS  Google Scholar 

  97. W. J. Visek and S. K. Clinton, Dietary fat and breast cancer, in: “Dietary Fats and Health,” E. G. Perkins and W. J. Visek, eds., American Oil Chemists Society, Champaign, 111. (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Visek, W.J. (1986). Dietary Protein and Experimental Carcinogenesis. In: Poirier, L.A., Newberne, P.M., Pariza, M.W. (eds) Essential Nutrients in Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1835-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1835-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9025-4

  • Online ISBN: 978-1-4613-1835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics