Skip to main content

Aspects of the Functional and Chemical Anatomy of the Insect Brain

  • Chapter
Nervous Systems in Invertebrates

Abstract

The functional organization of the insect brain is illustrated by descriptions of the optic lobes, ocellar and antennal projections and their convergence onto descending pathways. The neuropils in which the integration of signals take place are of two kinds: glomerular and non-glomerular. The former have strictly geometrically organized neural processes, the latter have been considered without discernable patterns. The dendrites of many of the descending neurons (DNs) and higher order interneurons arborize in non-glomerular neuropil and analysis of these neurons reveal patterned organization also in this type of neuropil.

Four different DN pathways in the Calliphora brain are outlined. These constitute the giant fiber pathway and three pathways subserving the large horizontal and vertical motion sensitive neurons in the lobula plate. Most DNs are arranged in clusters and it is shown that they receive multimodal inputs and are forming complex output connections.

The organization of the protocerebral mushroom bodies and central body complex and their possible integration into the sensory and descending system is discussed. These higher order neuropils form very complex connections, especially via non-glomerular neuropil and may have a role in gating of signals in descending pathways. Some of the structural analysis of the higher protocerebral centers is by means of immunocytochemistry of neuroactive substances. The possible roles of some of the neuroactive substances in modulation of neurons at different levels of the insect brain are briefly speculated upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AmmermĂ¼ller J, Weiler R (1985) S-neurons and not L-neurons are the source of GABA-ergic action in the ocellar system. J Comp Physiol A. 157: 779–788.

    PubMed  Google Scholar 

  • Bacon J P, Strausfeld N J (1986) The dipteran ‘Giant fibre’ pathway: neurons and signals. J Comp Physiol A 158: 529–548.

    Google Scholar 

  • Bicker G, Schafer S, Kingan TG (1985) Mushroom body feedback interneurons in the honeybee show GABA-like immunoreactivity. Brain Res 360: 394–397.

    PubMed  CAS  Google Scholar 

  • Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J Insect Physiol 30: 15–26.

    Google Scholar 

  • Braitenberg V (1967) Patterns of projections in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res 3: 271–298.

    PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. W.H. Freeman, San Francisco and London.

    Google Scholar 

  • Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Sattele DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246: 57–62.

    CAS  Google Scholar 

  • Burghause FM (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jahrb Physiol 83: 502–525.

    Google Scholar 

  • Burrows M, Rowell CHF (1973) Connections between visual interneurons and metathoracid motorneurons in the locust. J Comp Physiol 85: 221–234.

    Google Scholar 

  • Duve H, Thorpe A, Strausfeld N J (1983) Cobalt-immunocytochemical identification of peptidergic neurons in Calliphora innervating central and peripheral targets. J Neurocytol 12: 949–970.

    Google Scholar 

  • Dvorak DR, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the fly lobe. J Comp Physiol 100: 5–23.

    Google Scholar 

  • Eckert H, Bishop LG (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata (Diptera, Calliphoridae). J Comp Physiol 126: 57–86.

    Google Scholar 

  • Ernst KD, Boeckh J, Boeckh V (1977) Neuroanatomical study of the organization of the central antennal pathway in insects. Cell Tissue Res 176: 285–308.

    PubMed  CAS  Google Scholar 

  • Fent K, Wehner R (1985) Ocelli: A celestial compass in the desert ant Cataglyphis. Science 228: 192–194.

    PubMed  CAS  Google Scholar 

  • Fischbach KF, Heisenberg M (1984) Neurogenetics and behaviour in insects. J Exp Biol 112: 65–93.

    Google Scholar 

  • Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981) Sexual dimorphism in a photoreceptor. Nature 291: 241–244.

    Google Scholar 

  • Geiger G, Nässei DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurons. Nature 293: 398–399.

    PubMed  CAS  Google Scholar 

  • Gewecke M (1974) The antennae of insects as air current sense organs and their relationships to the control of flight. In: Barton-Browne L (ed) Experimental analysis of insect behaviour. Springer Verlag, Heidelberg, Berlin, New York.

    Google Scholar 

  • Goodman L J (1981) Organization and physiology of the insect dorsal ocellar system. In: Autrum H (ed) Handbook of sensory physiology. Vol. VII/6c. Springer, Berlin.

    Google Scholar 

  • Hagberg M, Nässei DR (1986) Interneurons subserving ocelli in two trichopterous insects: morphology and central projections. Cell Tissue Res 245: 197–205.

    Google Scholar 

  • Hall J C (1984) Complex brain and behavioral functions disrupted by mutations in Drosophila. Develop Genetics 4: 355–378.

    CAS  Google Scholar 

  • Hardie RC (1983) Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica. Cell Tissue Res 233: 1–21.

    PubMed  CAS  Google Scholar 

  • Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol (in press).

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981: 47–70.

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York.

    Google Scholar 

  • Hausen K, Strausfeld, NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc Soc Lond 208: 57–71.

    Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells change optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc Soc Lond B 219: 211–216.

    Google Scholar 

  • Heisenberg M (1980) Mutants of brain structure and function: what is the significance of the mushroom bodies for the behavior. In: Siddiqui D, Babu P, Hall LM, Hall IC (eds) Development and neurobiology of Drosophila. Plenum Press, New York.

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolff R (1978) Optomotor-blind H31- a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124: 287–296.

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol 149: 179–193.

    Google Scholar 

  • Homberg U (1985) Interneurons of the central complex in the bee brain (Apis mellifera, L.). J Insect Physiol 31: 251–264.

    Google Scholar 

  • Homberg U, Erber J (1979) Response characteristics and identification of extrinsic mushroom body neurons in the bee. Z Nautrforsch 34C: 612–615.

    Google Scholar 

  • Howse PE (1975) Brain structure and behaviour in insects. Ann Rev Entomol 20: 612–615.

    Google Scholar 

  • Huber F (1960) Untersuchungen Ă¼ber die Funktion des Zentralnervensystems und insbesondere des Gehirnes bei der Forbewegung und der Lauterzeugung der Grillen. Z vergl Physiol 44: 60–132.

    Google Scholar 

  • Huber F (1978) The insect nervous system and insect behaviour. Anim Behav 26: 969–981.

    Google Scholar 

  • Hughes GM (1965) Neuronal pathways in the insect central nervous system. Treherne JE, Beament JWL (eds) The physiology of the insect nervous system. Academic Pres, New York.

    Google Scholar 

  • King DG, Wyman RJ (1980) Anatomy of the giant fiber pathway in Drosophila. I. Three thoracic components of the pathway. J Neurocytol 9: 753–770.

    PubMed  CAS  Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Kimplexauge von Musca. Exp Brain Res 3: 248–270.

    PubMed  CAS  Google Scholar 

  • Klemm N (1976) Histochemistry of putative transmitter substances in the insect brain. Prog Neurobiol 7: 99–169.

    PubMed  CAS  Google Scholar 

  • Klemm N Steinbusch HWM, Sundler F (1984) Distribution of serotonin containing neurons and their pathways in the supraoesopeal ganglion of the cockroach Periplaneta americana (L) as revealed by immunocytochemistry. J Comp Neurol 225: 387–395.

    PubMed  CAS  Google Scholar 

  • Koontz MA, Edwards JS (1984) Central projections of first-order ocellar interneurons in two orthopteroid insects Acheta domestica and Periplaneta americana. Cell Tissue Res 236: 133–146.

    PubMed  CAS  Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: Polarizational and angular sensitivity. J Comp Physiol 141: 19–30.

    Google Scholar 

  • Matsumoto MG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta: response charcteristics and morphology of central neurons in the antennal lobes. Proc Soc Lond B 213: 249–277.

    CAS  Google Scholar 

  • Meinertzhagen IA (1976) The organization of perpendicular fibre pathways in the insect optic lobe. Phil Trans R Soc Lond B 274: 555–594.

    CAS  Google Scholar 

  • Meyer EP (1984) Retrograde labelling of photoreceptors in different regions of the compound eyes of bees and ant. J Neurocytol 13: 825–836.

    PubMed  CAS  Google Scholar 

  • Meyer EP, Nässei DR (1986) Terminations of photoreceptor axons from different regions of the compound eye of the desert ant Cataglyphis bicolor. Proc R Soc Lond B (in press).

    Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässei DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochem 84: 207–216.

    CAS  Google Scholar 

  • Milde J (1982) Elektrophysiologische und anatomische Untersuchungen and Interneuronen erster un hoher Ordnung des Biene. Doctoral dissertation. Free University of Berlin.

    Google Scholar 

  • Milde JJ (1984) Ocellar interneurons in the honey bee. Structure and signals of L-neurons. J Comp Physiol A 154: 683–693.

    Google Scholar 

  • Milde JJ Seyan HS, Strausfeld NJ (1987) The neck motor system of the fly Calliphora erythrocephala. II Sensory organization. J Comp Physiol A 160: 225–238.

    Google Scholar 

  • Mobbs PG (1982) The brain of the honey bee Apis mellifica. I. The connections and spatial organization of the mushroom bodies. Phil Trans R Soc Lond B 29: 309–354.

    Google Scholar 

  • Nässei DR (1986a) Serotonin and serotoinin-immunoreactive neurons in the nervous system of insects. Prog Neurbiol (in press).

    Google Scholar 

  • Nässei DR (1986b) Strategies for neuronal marking in arthropod brains. In: Gupta AP (ed) The arthropod brain, its evolution, development, structure and function. Wiley, New York (in press).

    Google Scholar 

  • Nässei DR (1987) Neuroactive substances in the insect CNS. (This volume).

    Google Scholar 

  • Nässei DR, Elofsson R (1986) Comparative anatomy of the crustacean brain. In: Gupta AP (ed) The arthropod brain, its evolution, development, structure and function. Wiley, New York (in press).

    Google Scholar 

  • Nässei DR, Hagberg M (1985) Ocellar interneurons in the blowfly Calliphora erythrocephala: morphology and central projections. Cell Tissue Res 242: 417–426.

    Google Scholar 

  • Nässei DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232: 129–140.

    Google Scholar 

  • Nässei DR, O’Shea M (1987) Proctolin-like immunoreactive neurons in the blowfly central nervous system. J Comp Neurol (in press).

    Google Scholar 

  • Nässei DR, Högmo O, Hallberg E (1984) Antennal receptors in the blowfly Calliphora erythrocephala. 1. The gigantic central projection of the pedicellar campaniform sensillum. J Morphol 180: 159–169.

    Google Scholar 

  • Nässei DR, Meyer EP, Klemm N (1985) Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. J Comp Neurol 232: 190–204.

    Google Scholar 

  • Nässei DR, Ohlsson L, Sivasubramanian P (1987) Differentiation of serotonin-immunoreactive neurons in fly optic lobes developing in situ or cultured in vivo without eye discs. J Comp Neurol 225: 327–340.

    Google Scholar 

  • O’Shea M, Rowell CHF (1975) A spike-transmitting electrical synapse between visual interneurons in the locust movement detector system. J Comp Physiol 97: 143–158.

    Google Scholar 

  • O’Shea M, Rowell CHF (1976) The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferetns to the fan-like dendrites of the LGMD. J Exp Biol 65: 289–308.

    PubMed  Google Scholar 

  • O’Shea M, Rowell CHF, Williams JLD (1974) The anatomy of a locust visual interneurone; the descending contralateral movement detector. J Exp Biol 60: 1–12.

    Google Scholar 

  • Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of locust jump by multimodal inhibitory interneurons. J Neurophysiol 43: 257–278.

    PubMed  CAS  Google Scholar 

  • Pierantoni R (1976) A look into the cock-pit of the fly. The architecture of the lobula plate. Cell Tissue Res 171: 101–122.

    PubMed  CAS  Google Scholar 

  • Rowell CHF (1971) The orphopteran descendinging movement detector (DMD) neurons: a characterization and review. Z vergl Physiol 73: 167–194.

    Google Scholar 

  • Rowell CHF, Pearson KG (1983) Ocellar input to the flight motorystem of the locust Schistocerca. Structure and function. J Exp Biol 103: 265–288.

    Google Scholar 

  • Rowell CHF, O’Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68: 157–185.

    Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246: 287–300.

    PubMed  Google Scholar 

  • Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus. Cell Tissue Res 230: 573–586.

    PubMed  CAS  Google Scholar 

  • Schildberger K (1984) Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol A 154: 71–79.

    Google Scholar 

  • Schinz RH (1975) Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tissue Res 162: 23–34.

    PubMed  CAS  Google Scholar 

  • SchĂ¼rmann FW (1974) Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19: 406–432.

    PubMed  Google Scholar 

  • SchĂ¼rmann FW (1985) Aspekte neuronaler VerknĂ¼pfung im zentralen Hirn der Insekten. In: Rensch B (ed) Evolution: Zelle als Organismus. Aschendorff, Munster.

    Google Scholar 

  • SchĂ¼rmann FW (1987) The architecture of the mushroom bodies and related neuropils in the insect brain. In: Gupta AP (ed) The arthropod brain, its evolution, development, structure and function. Wiley, New York (in press).

    Google Scholar 

  • Stocker RF, Lawrence PA (1981) Sensory projections from normal and homeotically transformed antennae in Drosophila. Develop Biol 82: 224–237.

    PubMed  CAS  Google Scholar 

  • Stocker RF, Singh RN, Schorderet M, Siddiqi O (1983) Projection patterns of diferent types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232: 237–248.

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1976a) Atlas of an insect brain. Springer, Heidelberg.

    Google Scholar 

  • Strausfeld NJ (1976b) Mosaic organization, layers and visual pathways in the insect brain. In: Zettler F, Weiler R (eds) Neural priciples in vision. Springer, Heidelberg.

    Google Scholar 

  • Strausfeld NJ (1980) Male and female visual neurones in dipterous insects. Nature 283: 381–383.

    Google Scholar 

  • Strausfeld NJ (1983) (ed) Functional neuroanatomy. Springer, Berlin.

    Google Scholar 

  • Strausfeld NJ (1984) Functional neuroanatomy of the blowfy’s visual system. In: Ali MA (ed) Photoreception and vision in invertebrates Plenum Press, New York.

    Google Scholar 

  • Strausfeld NJ, Bacon JP (1983) Multimodal convergence in the central nervous system of dipterous insects. In: Horn (ed) Fortschr. d. Zool. 28. gustav Fisher, New York, Stuttgart.

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985a) Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg neuropil in Calliphora erythrocephala. Cell Tissue Res 240: 617–640.

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1985b) The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica. Cell Tissue Res 242: 531–550.

    Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1977) Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science 195: 894–897.

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Nässei DR (1980) Neuroarchitecture of brain regions that subserve compound eyes in Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology. VII/6B. Spirnger, Berlin, Heidelberg, New York.

    Google Scholar 

  • Strausfeld NJ, Obermeyer M (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and central nervous systems. J Comp Physiol 110: 1–12.

    CAS  Google Scholar 

  • Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere and prosternal inputs at neck motor neurons of Calliphora. Cell Tissue Res 240: 601–615.

    Google Scholar 

  • Strausfeld NO, Wunderer H (1985) Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light. Cell Tissue Res 242: 163–178.

    Google Scholar 

  • Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythrocephala. I. Muscles and motor neurons. J Comp Physiol A 160: 205–224.

    Google Scholar 

  • Strausfeld NJ, Bassemir U, Singh RN, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30: 73–93.

    Google Scholar 

  • Tanoye MA, Wyman RJ (1980) Motor outputs of giant nerve fibers in Drosophila. J Neurophysiol 44: 405–421.

    Google Scholar 

  • Taylor CP (1981) Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioural analysis. J Exp Biol 93: 1–18.

    Google Scholar 

  • Thorpe A, Duve H (1987) Purification, characterisation and cellular distribution of insect neuropeptides with special emphisis on their relationship to biologically active peptides of vertebrates. (This volume)

    Google Scholar 

  • Trujillo-Cenoz O (1966) Some aspects of the structural organization of the intermediate retina of dipterans. J Ultrastruct Res 13: 1–33.

    Google Scholar 

  • Wehrhahn C (1979) Sex specific differences in chasing behaviour of free flying houseflies (Musca). Biol Cybern 32: 239–241.

    Google Scholar 

  • Wehrhahn C, Poggio T, Bulthoff H (1982) Tracking and chasing in houseflies (Musca). Biol Cybern 45: 123–130.

    Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground plan of the midbrain and an introduction to the central complex in the locust Schistocerca gregaria. J Zool Lond 176: 67–86.

    Google Scholar 

  • Wilson M (1978) Functional organization of locust ocelli. J Comp Physiol 124: 297–316.

    Google Scholar 

  • Witthöft W (1967) Absolute Anzahl und Verteilun der Zellen im Hirn der Honigbiene. Z Morph Tiere 61: 185–214.

    Google Scholar 

  • Wolburg-Buchholz K (1977) The superposition eye of Cloeon dipterum: The organization of the lamina ganglionaris. Cell Tissue Res 177: 9–128.

    PubMed  CAS  Google Scholar 

  • Wunderer H, Smola U (1982) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): An eye region specialised for the detection of polarized light. Int J Insect Morphol Embryol 11: 25–38.

    Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol 150: 379–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New york

About this chapter

Cite this chapter

Nässel, D.R. (1987). Aspects of the Functional and Chemical Anatomy of the Insect Brain. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics