Skip to main content

Shock Hugoniot Equation of State - Electron Band Theory Approach

  • Chapter
Shock Waves in Condensed Matter
  • 30 Accesses

Abstract

Of the various high pressure experimental data on a given material, the equation of state (EOS) is most amenable to theoretical treatment. Its interpretation involves, in principle,the straightforward application of electron band and lattice dynamical techniques for the calculation of pressure and internal energy as a function of volume and temperature. Though these formulations have been available since 1930’s, it is only during the last decade that considerable progress has been made in EOS computations by using these. Two reasons can be attributed for this advance. One is the considerable development of experiments involving lasers, electrically driven foils and underground nuclear explosions to study EOS at pressures above 100 GPa2–5. Very recently, experimental data on iron and aluminium shocked to ~ 500 TPa have been reported6. These data have opened up a new area in the P-V-T surface for theoretical research, where the pressure and thermal ionisation effects are important. The second is the advent of large and fast computers and improvements in energy band methods themselves. These have made computations less time consuming and have permitted evaluation of total energies of crystalline solids to such a precision that not only can bulk properties like EOS be calculated accurately but energy differences between different phases can be determined to an accuracy of 0.1 ev per atom or better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.P. Wigner and F. Seitz, Phys. Rev. 43: 804 (1933).

    Article  Google Scholar 

  2. R.J. Trainor, J.W. Shaner, J.M. Auerbach and N.C. Holmes, Phys. Rev. Lett. 42: 1154 (1979).

    Article  Google Scholar 

  3. R.C. Weingart, Lawrence Livermore Laboratory Report UCRI-52752 (1979).

    Google Scholar 

  4. C.E. Ragan III, Phys. Rev. A 21:458 (1980); Phys. Rev. A 25: 3360 (1982); Phys. Rev. A29: 1391 (1984)

    Article  Google Scholar 

  5. A.P. Volkov, N.P. Voloshin, A.S. Vladimirov, V.N. Nogin and U.A. Simonenkov, JETP Lett. 31: 588 (1981).

    Google Scholar 

  6. A.S. Vladimirov, N.P. Voloshin, V.N. Nogin, A.V. Petrovtsev and U.A. Simonenkov, JETP Lett. 39: 82 (1984).

    Google Scholar 

  7. B.K. Godwal, S.K. Sikka and R. Chidambaram, Phys. Rep. 102: 123 (1983).

    Article  Google Scholar 

  8. Ya. B. Zel’dovich and Yu.P. Raizer in:“Physics of Shock waves and High Temperature Hydrodynamics Phenomena,” Vols. 1amp;2, Academic Press, New York (1967).

    Google Scholar 

  9. P. Hohenberg and W. Kohn, Phys. Rev. 136:B 864 (1964).

    Article  Google Scholar 

  10. W. Kohn and I.J. Sham, Phys. Rev. 140:A 1133 (1965).

    Article  Google Scholar 

  11. J.C. Slater, J. Chem Phys. 57: 2389 (1972).

    Article  Google Scholar 

  12. J. Ihm, A. Zunger and M.L. Cohen, J. Phys. C12: 4409 (1972).

    Google Scholar 

  13. J.A. Moriarty, Phys. Rev. 16:2537 (1977); Phys. Rev. B 26: 1754 (1982).

    Article  Google Scholar 

  14. O.K. Adersen, Phys. Rev. B 12: 3060 (1975).

    Article  Google Scholar 

  15. H.L. Skriver, in “The LMTO Method,” Springer-Verlag Berlin (1984).

    Google Scholar 

  16. T. Neal, in:“High Pressure Science and Technology”, Vol 1:80 K.D. Timmerhaus and M.S. Barber ed., Plenium, New York (1978).

    Google Scholar 

  17. H.K. Godwal, Pramana 19: 225 (1982).

    Article  Google Scholar 

  18. M.T. Yin and M.L. Cohen, Phys. Rev. B26: 3259 (1982).

    Article  Google Scholar 

  19. J.A. Moriarty, D.A. Young and M. Ross, Phys. Rev. B 30: 578 (1984).

    Article  Google Scholar 

  20. A.I. Voropinov, G.M. Gandelman and V.G. Podaval’ny, Sov. Phys. Usp. 13: 56 (1970).

    Article  Google Scholar 

  21. A. K. McMahan, B.L. Hord and M. Ross, Phys. Rev. B 15: 726 (1977).

    Article  Google Scholar 

  22. B.K. Godwal, J. Phys. F10: 377 (1980).

    Article  Google Scholar 

  23. B.K. Godwal, S.K. Sikka and R. Chidambaram, Phys Rev. B 20: 2362 (1979).

    Article  Google Scholar 

  24. M. Ross, Phys. Rev B 20: 4891 (1979).

    Google Scholar 

  25. B.K. Godwal and S.K. Sikka, J. Phys. F 12: 655 (1982).

    Article  Google Scholar 

  26. A. K. McMahan, H. L. Skriver and B. Johansson, Phys. Rev. B23: 5016 (1981).

    Article  Google Scholar 

  27. F. Perrot, Phys. Rev. B21: 3167 (1980).

    Article  Google Scholar 

  28. A.C. Mitchell and W.J. Nellis, J. App. Phys. 52: 3363 (1981).

    Article  Google Scholar 

  29. S.K. Sikka and B.K. Godwal, Sol. State Comm. 38:949 (1981).

    Article  Google Scholar 

  30. S.K. Sikka, Nuclear Physics and Solid State Phys.(India) 21 A: 83 (1978).

    Google Scholar 

  31. D.A. Young and M. Ross, Phys. Rev. B29:682 (1984).

    Google Scholar 

  32. L. Moruzzi, J.F. Jank and A.R. Williams, in:“Calculated Electric Properties of Metals”, Pergamon, New York (1978).

    Google Scholar 

  33. L. V. Al’tshuler, Sov. Phys. Usp. 8: 52 (1965).

    Article  Google Scholar 

  34. B.J. Alder, in:“Solids under Pressure”, W. Paul and D.M. Warschauer ed., McGraw Hill, New York (1963).

    Google Scholar 

  35. D.G. Pettifor, J. Phys. F7: 613 (1977).

    Article  Google Scholar 

  36. Y.K. Vohra, S.K. Sikka and W.B. Holzapfel, J. Phys. F 13: L107 (1983).

    Google Scholar 

  37. B.K. Godwal, S.K. Sikka and R. Chidambaram, Phys. Rev. Lett. 47: 1144 (1981).

    Article  Google Scholar 

  38. C. A. Rouse, in:“Prog. in High Temp. Phys. and Chem.”, Vol 4, C. A. Rouse, ed., Pergamon Press, New York (1971).

    Google Scholar 

  39. B.K. Godwal, Phys. Rev. A 28: 1103 (1983).

    Article  Google Scholar 

  40. R.M. More, Phys. Rev. A 19: 1234 (1979).

    Article  Google Scholar 

  41. D. Liberman, Phys. Rev. B 20: 4891 (1979).

    Article  Google Scholar 

  42. K. Takemura and K. Syassen, J. Phys. F 15: 543 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Sikka, S.K. (1986). Shock Hugoniot Equation of State - Electron Band Theory Approach. In: Gupta, Y.M. (eds) Shock Waves in Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2207-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2207-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9296-8

  • Online ISBN: 978-1-4613-2207-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics