Skip to main content

CVD-Processing of Ceramic-Ceramic Composite Materials

  • Chapter
Tailoring Multiphase and Composite Ceramics

Abstract

Chemical vapor deposition (CVD), i.e. the deposition of a solid by a chemical reaction involving one or several gaseous chemical species and usually thermally activated, has been used for many years in different kinds of applications (e.g. oxidation or/and wear resistant coatings for cemented carbides, steels or alloys, preforms for drawing graded-index optical fibers, thin films for integrated circuits, coatings for nuclear fuels, etc...). In most cases, the substrates considered here have a rather simple shape and are made of non-porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.O. Pierson and M.L. Lieberman, The Chemical Vapor Deposition of Carbon on Carbon Fibers, Carbon, 13: 159 (1975)

    Google Scholar 

  2. F. Christin, R. Naslain and C. Bernard, A Thermodynamic and Experimental Approach of Silicon Carbide CVD. Application to the CVD-infiltration of Porous Carbon Composites, ijn Proc. 7th. Int. Conf. CVD (T.O. Sedwick and H. Lydin, eds.), p. 499, The Electrochem. Soc., Princeton (1979)

    Google Scholar 

  3. R. Naslain, J.V. Rossignol, P. Hagenmuller, F. Christin, L. Heraud ând J.J. Choury, Synthesis and Properties of New Composite Materials for High Temperature Applications Based on Carbon Fibers and C-SiC or C-TiC Hybrid Matrices, Rev. Chimie Minérale, 18: 544 (1981)

    Google Scholar 

  4. H. Hannache, J.Y. Rossignol, F. Langlais, R. Naslain and P. Hagenmuller. Boron-Carbide LPCVD from BCI3-CH4-H2 Gas Mixtures. Applications to the Synthesis of 2D-C-C/B4C Composite Materials by CVI, (submitted to J. Less- common Metals)

    Google Scholar 

  5. H. Hannache, R. Naslain and C. Bernard, Boron Nitride Chemical Vapour Infiltration of Fibrous Materials from BCl3-NH3-H2 or BF3-NH3 Mixtures. A Thermodynamic and Experimental Approach. J. Less-common Metals, 95: 221 (1983)

    Google Scholar 

  6. R. Colmet, I. Lhermitte-Sebire and R. Naslain. Fibrous Alumina-alumina Composite Materials obtained According to a CVI-Technique (submitted to J. Amer., Ceram. Soc.)

    Google Scholar 

  7. J.Y. Rossignol, J.M. Quenisset, H. Hannache, C. Mallet and R. Naslain. Mechanical Behavior in Compression Loading of 2D Composite Materials Made of Carbon Fabrics and a Ceramic Matrix (submitted to J. Mat. Science)

    Google Scholar 

  8. R. Colmet, R. Naslain, P. Hagenmuller and C. Bernard, Thermodynamic and Experimental Analysis of Chemical Vapor Deposition of Alumina from AlCl3-H2-CO2 Gas Phase Mixtures. J. Electrochem. Soc., 129: 1367 (1982)

    Google Scholar 

  9. J.Y. Rossignol, F. Langlais and R. Naslain. A Tentative Modelization of Titanium Carbide CVI within the Pore Network of Two-dimensional Carbon-carbon Composite Preforms. Proc. 9th. Int. Conf. CVD (Mc. D. Robinson et al., eds.), p. 596, The Electrochem. Soc., Pennington (1984)

    Google Scholar 

  10. I. Lhermitte-Sebire, R. Colmet, R. Naslain and C. Bernard, the CVD of Alumina from AlCl3-H2-CO2 on a Stoichiometric TiC Substrate : A Thermodynamic Approach (submitted to J. Less-common Metals)

    Google Scholar 

  11. E. Fitzer and D. Hegen, Chemical Vapor Deposition of Silicon Carbide and Silicon Nitride-Chemistry’s Contribution to Modern Silicon Ceramics, Angew Chem. Int. Ed. Engl., 18: 295 (1979)

    Article  Google Scholar 

  12. V. Krukonis, Chemical Vapor Deposition of Boron Filament, in “Boron and Refractory Borides” (V.I. Matkovich, ed.), chap. Dj: 518, Springer-Ver- lag, Berlin-Heidelberg (1977)

    Google Scholar 

  13. R.L. Crane and V.J. Krukonis. Strength and Fracture Properties of Silicon Carbide Filament, Ceram. Bull., 54: 184 (1975)

    Google Scholar 

  14. F.W. Wawner, A.Y. Teng and S.R. Nutt, Microstructural Characterization of SiC (SCS) Filaments, SAMPE Quarterly, April: 39 (1983)

    Google Scholar 

  15. T.F. Foltz, SiC-Fibers for Advanced Ceramic Composites, private communication 1985

    Google Scholar 

  16. P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi and F. Cruege, SiC-Filament/Titanium Matrix Composites Regarded as Model Composites. 1. Filament Microanalysis and Strength Characterization, J. Mater. Sc., 19: 2731 (1984)

    Google Scholar 

  17. D. Morin, Boron Carbide-Coated Boron Filament as Reinforcement in Aluminium Alloy Matrices, J. Less-common Met., 47: 207 (1976)

    Google Scholar 

  18. L. Aggour, E. Fitzer, E. Ignotowitz and M. Sahebkar, Chemical Vapor Deposition of Pyrocarbon SiC, TiC, TiN, Si and Ta on Different Types of Carbon Fibres, Carbon, 12: 358 (1974)

    Google Scholar 

  19. W. Meyerer, D. Kizer and S. Paprocki, Versatility of Graphite-Aluminum Composites, Proc. Int. Conf. Comp. Mater. 2, Toronto, Apr. 16-20, B. Noton et al. eds., p. 141, TMS-AIME, Warrendale (Pa ), (1978)

    Google Scholar 

  20. E. Fitzer, Chemical Vapor Deposition of SiC and Si3N4, Proc. Int. Symp. on Factors in Densification and Sintering of Oxide and Non-oxide Ceramics, Hakone, Japan, p. 40 (1978)

    Google Scholar 

  21. E. Fitzer, D. Hegen and H. Strohmeier, Possibility of Gas Phase Impregnation with Silicon Carbide, Rev. Int. Hautes Temper. Refract., 17: 23 (1980)

    Google Scholar 

  22. E. Fitzer, W. Fritz and R. Gadow, Possibilities for Fibre Reinforcement of Silicon Carbide, Proc. Symp. on Advanced Ceramic Materials, Tokyo Institute of Technol., Yokohama, Oct. (1983)

    Google Scholar 

  23. H. Hannache, J.M. Quenisset, R. Naslain and L. Heraud, Composite Materials Made from a Porous 2D-Carbon-carbon Preform Densified with Boron Nitride by Chemical Vapor Infiltration, J. Mater. Sc., 19: 202 (1984)

    Google Scholar 

  24. C.H.J. Van den Breckel, R.M.M. Fonville, P.J.M. Van der Straten and G. Verspui, CVD of Ni, TiN and TiC on Complex Shapes, Proc. of 8th. Int. Conf. CVD (J.M. Blocher et al., eds.), p. 142, The Electrochem. Soc., Pennington (1981)

    Google Scholar 

  25. A.J. Caputo, W.J. Lackey and D.P. Stinton, Development of a New, Faster Process for the Fabrication of Ceramic Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration, Proc. 9th. Annual Conf. Composites and Adv. Ceram. Mater., Cocoa Beach, Florida, Jan. (1985)

    Google Scholar 

  26. E. Fitzer, Carbon Based Composites, J. Chimie Physique, 81: 717 (1984)

    Google Scholar 

  27. P.J. Lamicq, Propriétés et Utilisations des Composites carbone-carbone, J. Chimie Physique, 81: 735 (1984)

    Google Scholar 

  28. J. Delmonte, Technology of Carbon and Graphite Fiber Composites, chap. 13, Van Nostrand Reinhold, New York (1981)

    Google Scholar 

  29. F. Christin, R. Naslain, P. Hagenmuller and J.J. Choury, Pièce poreuse carbonée densifiée in-situ par dépôt chimique en phase vapeur de matériaux réfractaires autres que le carbone et procédé de fabrication, Brevet français 77/26979, Sept. (1977)

    Google Scholar 

  30. L. Heraud, F. Christin, R. Naslain and P. Hagenmuller, Properties and Applications of Oxidation-Resistant Composite Materials obtained by SiC- Infiltration, Proc. of 8th. Int. Conf. CVD (J.M. Blocher et al., eds.), p. 782, The Electrochem. Soc., Pennington (1981)

    Google Scholar 

  31. M. Dauchier, P. Lamicq and J. Mace, Comportement thermomécanique des composites céramique-céramique, Rev. Int. Hautes Temp. Refract., 19: 285 (1982)

    Google Scholar 

  32. M. Dauchier, G. Bernhart and C. Bonnet, Properties of Silicon Carbide Based Ceramic-ceramic Composites, Proc. 30th. Nat. SAMPE, Anaheim (March 19-21, 1985 ), vol. 30, pp. 1519-1525, SAMPE, Covina (Cal.), 1985

    Google Scholar 

  33. G. Bernhart, P. Lamicq and J. Mace, Fiabilité des composites céramique- céramique, Industrie Céramique, 790: 51 (1985)

    Google Scholar 

  34. D. Neuilly, J.M. Quenisset, F. Langlais, R. Naslain and L. Heraud, private communication (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Naslain, R., Langlais, F. (1986). CVD-Processing of Ceramic-Ceramic Composite Materials. In: Tressler, R.E., Messing, G.L., Pantano, C.G., Newnham, R.E. (eds) Tailoring Multiphase and Composite Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2233-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2233-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9309-5

  • Online ISBN: 978-1-4613-2233-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics