Skip to main content

Calcium Cooperativity in Calcium Entry and Calcium Action, and its Implications with Regard to Facilitation, at the Mouse Motor Nerve Terminal

  • Chapter
Calcium, Neuronal Function and Transmitter Release

Part of the book series: Topics in the Neurosciences ((TNSC,volume 1))

Abstract

It is now well established that the coupling of neurotransmitter release to depolarization of nerve terminals depends upon influx of Ca2+ from the external medium via voltage-regulated cation-selective channels (reviews, 1, 2, 3). At the vertebrate neuromuscular junction this dependence is manifest in essentially the same way for release provoked by nerve impulses (i.e., end-plate potentials, EPPs) or release manifest as a raised frequency of miniature end-plate potentials (fmepp) induced by intermittent and graded depolarization of nerve terminals by extrinsically-applied currents or by steady depolarization of nerve terminals using raised K+ (4, 5, 6). The observation that EPP height can be proportional to the fourth power of the external Ca2+ (7, 8) has led to the proposition that four atoms of Ca2+ are required for the release of each package or “quantum” of neurotransmitter (8). In the first part of this paper there will be presented three independent lines of evidence indicating that this high apparent cooperativity is compounded of two elements: (a) a cooperativity of 2 for entry of Ca2+ into the nerve terminal and (b) a cooperativity of about 2 (at most 3) for transmitter release by internal Ca2+ .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katz B: The Release of Neural Transmitter Substances. Charles C. Thomas, Springfield, 1969

    Google Scholar 

  2. Llinas R: Calcium and transmitter release in squid synapse. In: M Cowan and JA Ferrendelli (eds) Society for Neuroscience Symposia. Society for Neuroscience, Bethesda Md. 2:139–160, 1977

    Google Scholar 

  3. Reuter H: Divalent cations as charge carriers in excitable membranes. Prog. Biophys. Mol. Biol. 26: 1–43, 1973

    Article  CAS  Google Scholar 

  4. Cooke JD, Okamoto K, Quastel DMJ: The role of calcium in depolarization-secretion coupling at the motor nerve terminal. J. Physiol. (Lond.) 228: 459–497, 1973

    PubMed  CAS  Google Scholar 

  5. Landau EM: The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals. J. Physiol. (Lond.) 203: 281–299, 1969

    PubMed  CAS  Google Scholar 

  6. Liley AW: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134: 427–443, 1956

    PubMed  CAS  Google Scholar 

  7. Jenkinson DH: The nature of antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. (Lond.) 196: 75–86, 1957

    Google Scholar 

  8. Dodge FA, Rahamimoff R: Cooperative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193: 419–432, 1967

    PubMed  CAS  Google Scholar 

  9. Del Castillo J, Katz B: Quantal components of the end-plate potential. J. Physiol. (Lond.) 124: 560–573, 1954

    Google Scholar 

  10. Del Castillo J, Katz B: Statistical factors involved in neuromuscular facilitation and depression. J. Physiol. (Lond.) 124: 574–585, 1954

    Google Scholar 

  11. Dudel J, Kuffler SW: Mechanism of facilitation at the crayfish neuromuscular junction. J. Physiol. (Lond.) 155: 530–542, 1961

    PubMed  CAS  Google Scholar 

  12. Hubbard JI: Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter. J. Physiol. (Lond.) 169: 641–662, 1963

    PubMed  CAS  Google Scholar 

  13. Zengel KE, Magleby KL: Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction. J. Gen. Physiol. 77: 503–529, 1981

    Article  PubMed  CAS  Google Scholar 

  14. Zengel KE, Magleby KL: Augmentation and facilitation of transmitter release: a quantitative description at the frog neuromuscular junction. J. Gen. Physiol. 80: 583–611, 1982

    Article  PubMed  CAS  Google Scholar 

  15. Katz B, Miledi R: The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195: 481–492, 1968

    PubMed  CAS  Google Scholar 

  16. Miledi R, Parker I: Calcium transients recorded with arsenazo III in the presynaptic terminal of the squid giant synapse. Proc. Roy. Soc. Lond. B. 212: 197–211, 1981

    Article  CAS  Google Scholar 

  17. Charlton MP, Smith SJ, Zucker RS: Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. J. Physiol. (Lond.) 323: 173–193, 1982

    PubMed  CAS  Google Scholar 

  18. Parnas H, Segel LA: A theoretical study of calcium entry in nerve terminals, with application to neurotransmitter release. J. Theor. Biol. 91: 125–169, 1981

    Article  PubMed  CAS  Google Scholar 

  19. Miledi R, Thies R: Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J. Physiol. (Lond.) 212: 245–257, 1971

    PubMed  CAS  Google Scholar 

  20. Rahamimoff R: A dual effect of calcium on neurotransmitter facilitation. J. Physiol. (Lond.) 195: 471–480, 1968

    PubMed  CAS  Google Scholar 

  21. Landau EM, Smolinsky A, Lass Y: Post-tetanic potentiation and facilitation do not share a common calcium dependent mechanism. Nature New Biol. 244: 155–157, 1973

    Article  PubMed  CAS  Google Scholar 

  22. Zengel KE, Magleby KL: Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction. J. Gen. Physiol. 76: 175–211, 1980

    Article  PubMed  CAS  Google Scholar 

  23. Cooke JD, Quastel DMJ: Transmitter release by mammalian motor nerve terminals in response to focal polarization. J. Physiol. (Lond.) 228: 377–405, 1973

    PubMed  CAS  Google Scholar 

  24. Elmqvist D, Josefsson, JO: The nature of the neuromuscular block produced by neomycin. Acta Physiol. Scand. 54: 105–110, 1962

    Article  PubMed  CAS  Google Scholar 

  25. Silinsky EM: On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses. J. Physiol. (Lond.) 274: 157–171, 1978

    PubMed  CAS  Google Scholar 

  26. Nachsen DA, Blaustein MP: Influx of calcium, strontium, and barium in presynaptic nerve terminals. J. Gen. Physiol. 79: 1065–1087, 1982

    Article  Google Scholar 

  27. Cooke JD, Quastel DMJ: Cumulative and persistent effects of nerve terminal depolarization on transmitter release. J. Physiol. (Lond.) 228: 407–434, 1973

    PubMed  CAS  Google Scholar 

  28. Hubbard JI, Jones SF, Landau EM: On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J. Physiol. (Lond.) 196: 75–86, 1968

    PubMed  CAS  Google Scholar 

  29. Molgo J, Thesleff S: Electrotonic properties of motor nerve terminals. Acta. Physiol. Scand. 114: 271–275, 1982

    Article  CAS  Google Scholar 

  30. Quastel DMJ: Excitation-secretion coupling at the mammalian neuromuscular junction. In: MVL Bennett (ed) Synaptic transmission and neuronal interaction. Raven Press, New York, 1974, pp 23–43

    Google Scholar 

  31. Hurlbut UP, Longenecker HB Jr, Mauro A: Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization. J. Physiol. (Lond.) 219: 17–38, 1971

    PubMed  CAS  Google Scholar 

  32. Rahamimoff R, Lev-Tov A, Meiri H: Primary and secondary regulation of quantal transmitter release; calcium and sodium. J. exp. Biol. 89: 5–18, 1980

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Quastel, D.M.J., Saint, D.A. (1986). Calcium Cooperativity in Calcium Entry and Calcium Action, and its Implications with Regard to Facilitation, at the Mouse Motor Nerve Terminal. In: Rahamimoff, R., Katz, B. (eds) Calcium, Neuronal Function and Transmitter Release. Topics in the Neurosciences, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2307-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2307-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9420-7

  • Online ISBN: 978-1-4613-2307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics