Skip to main content

The Role of the Cell Wall in the Intracellular Uptake of Cations by Lichens

  • Chapter
Lichen Physiology and Cell Biology

Abstract

When lichens or bryophytes are placed in solutions containing cations, an equilibrium is rapidly achieved between free cations in solution and cations bound to the exchange sites on the cell wells. For a given cation the extent of this process depends on the nature of the exchange sites, the affinity of the ion for these sites and the nature and number of pre-existing cations (Nieboer et al., 1978; Nieboer and Richardson, 1981; Brown and Beckett, 1984, 1985). With low concentrations of “heavy” metals in limited volumes of solution lichens and bryophytes can significantly reduce the cation concentration in solution. As heavy metal cations are effectively bound outside the plasma membrane, which surrounds the metabolically active cytoplasm, such binding might represent an apparent means of detoxifying the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckett, R.P., and Brown, D.H., 1983a, Naturally and experimentally induced zinc and copper resistance in the lichen genusPeltigera,Annals of Botany, 52: 43–50.

    CAS  Google Scholar 

  • Beckett, R.P., and Brown, D.H., 1983b, Cellular uptake of heavy metals by bryophytes and lichens,Proceedings of the 4th International Conference on Heavy Metals in the Environment, 1: 447–450.

    CAS  Google Scholar 

  • Beckett, R.P., and Brown, D.H., 1984a, The control of cadmium uptake in the lichen genusPeltigera,Journal of Experimental Botany, 35: 1071–1082.

    Article  CAS  Google Scholar 

  • Beckett, R.P., and Brown, D.H., 1984b, The relationship between cadmium uptake and heavy metal tolerance in the lichen genusPeltigera,New Phytologist, 97: 301–311.

    Article  CAS  Google Scholar 

  • Brown, D.H., and Bates, J.W., 1972, Uptake of lead by two populations ofGrimmia doniana,Journal of Bryology, 7: 187–193.

    Google Scholar 

  • Brown, D.H., and Beckett, R.P., 1983, Differential sensitivity of lichens to heavy metals,Annals of Botany, 52: 51–57.

    CAS  Google Scholar 

  • Brown, D.H., and Beckett, R.P., 1984, Uptake and effect of cations on lichen metabolism,The Lichenologist, 16: 173–188.

    Article  CAS  Google Scholar 

  • Brown, D.H., and Beckett, R.P., 1985, Minerals and lichens: acquisition, localisation and effect,in: “Surface Physiology of Lichens,” C. Vicente, D.H. Brown, and M.E. Legaz, eds, pp. 127–149, Universidad Computense de Madrid.

    Google Scholar 

  • Brown, D.H., and Buck, G.W., 1979, Desiccation effects and cation distribution in bryophytes,New Phytologist, 82: 115–125.

    Article  CAS  Google Scholar 

  • Brown, D.H., and House, K.L., 1978, Evidence of a copper-tolerant ecotype of the hepaticSolenostoma crenulatum,Annals of Botany, 42: 1383–1392.

    CAS  Google Scholar 

  • Brown, D.H., and Slingsby, D.R., 1972, The cellular location of lead and potassium in the lichenCladonia rangiformis (L.) Hoffm.,New Phytologist, 71: 297–305.

    Article  CAS  Google Scholar 

  • Buck, G.W., and Brown, D.H., 1979, The effects of desiccation on cation location in lichens,Annals of Botany, 44: 265–277.

    CAS  Google Scholar 

  • Collins J.M., and Farrar, J.F., 1978, Structural resistance to mass transfer in the lichenXanthoria parietina,New Phytologist, 81: 71–83.

    Article  Google Scholar 

  • Crittenden, P.D., 1983, The role of lichens in the nitrogen economy of subarctic woodlands: nitrogen loss from the nitrogen-fixing lichenStereocaulon paschaleduring rainfall,British EcologicalSociety Symposium, 22: 43–68.

    Google Scholar 

  • Farrar, J.F., and Smith, D.C., 1976, Ecological physiology of the lichenHypogymnia physodes. III. The importance of the rewetting phase,New Phytologist, 77: 115–125.

    Article  CAS  Google Scholar 

  • Garty, J., Galun, M., and Kessel, M., 1979, Localization of heavy metals and other elements accumulated in the lichen thallus,New Phytologist, 89: 631–645.

    Google Scholar 

  • Heywood, D., 1982, “A possible role of magnesium in preventing intracellular uptake of zinc in the mossRhytidiadelphus squarrosus”, B.Sc. thesis, University of Bristol.

    Google Scholar 

  • Hogan, G.D., and Rauser, W.E., 1981, Role of copper binding, absorption and translocation in copper tolerance ofAgrostis giganteaRoth.,Journal of Experimental Botany, 32: 27–36.

    Article  CAS  Google Scholar 

  • Jones, D., Wilson, M.J., and Laundon, J.R., 1982, Observations on the location and form of lead inStereocaulon vesuvianum,The Lichenologist, 14: 281–286.

    Article  Google Scholar 

  • Laaksovirta, K., and Olkkonen, H., 1977, Epiphytic lichen vegetation and element contents ofHypogymnia physodesand pine needles examined as indicators of air pollution at Kokkola, W. Finland,Annales Botanici Fennici, 14: 112–130.

    CAS  Google Scholar 

  • Lang, G.E., Reiners, W.A., and Heier, R.K., 1976, Potential alteration of precipitation chemistry by epiphytic lichens,Oecologia (Berlin), 25: 229–241.

    Article  Google Scholar 

  • Mathys, W., 1973, Vergleichende Untersuchungen der Zinkaufnahme von resistenten und sensitiven Populationen vonAgrostis tenuis Sibth.,Flora, Jena, 162: 492–499.

    CAS  Google Scholar 

  • Nieboer, E., and Richardson, D.H.S., 1980, The replacement of the non descript term “heavy metal” by a biologically and chemically significant classification of metal ions,Environmental Pollution (Series B), 1: 3–26.

    Article  CAS  Google Scholar 

  • Nieboer, E., and Richardson, D.H.S., 1981, Lichens as monitors of atmospheric deposition,in: “Atmospheric Pollution in Natural Waters,” S.J. Eisenreich, ed., pp. 339–388, Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Nieboer, E., Richardson, D.H.S., Boileau, L.J.R., Beckett, P.J. Lavoie, P., and Padovan, D., 1982, Lichens and mosses as monitors of industrial activity associated with uranium mining in Northern Ontario, Canada — Part 3: Accumulations of iron and titanium and their mutual dependence,Environmental Pollution (Series B), 4: 181–192.

    Article  CAS  Google Scholar 

  • Nieboer, E., Richardson, D.H.S., Lavoie, P., and Padovan, D., 1979, The role of metal-ion binding in modifying the toxic effects of sulphur dioxide on the lichenUmbilicaria muhlenbergii. I. Potassium efflux studies,New Phytologist, 82: 612–632.

    Article  Google Scholar 

  • Nieboer, E., Richardson, D.H.S., and Tomassini, F.D., 1978, Mineral uptake and release by lichens: An overview,The Bryologist, 81: 226–246.

    Article  CAS  Google Scholar 

  • Page, E.R., and Dainty, J., 1964, Manganese uptake by excised oat roots,Journal of Experimental Botany, 15: 428–443.

    Article  CAS  Google Scholar 

  • Peterson, P.J., 1969, The distribution of zinc-65 inAgrostis tenuisSibth. andA. stoloniferaL. tissues,Journal of Experimental Botany, 20: 863–875.

    Article  CAS  Google Scholar 

  • Puckett, K.J., 1976, The effect of metals on some aspects of lichen physiology,Canadian Journal of Botany, 54: 2695–2703.

    Article  CAS  Google Scholar 

  • Puckett, K.J., and Burton M.A.S., 1981, The effects of trace elements on lower plants,in: “Effect of Heavy Metal Pollution on Plants. Vol. 2. Metals in the Environment,” N.P. Lepp, ed., pp. 213–238, Applied Science Publishers, London.

    Google Scholar 

  • Rao, D.N., Robitaille, G., and LeBlanc, F., 1977, Influence of heavy metal pollution on lichens and bryophytes,Journal of the Hattori Botanical Laboratory, 42: 213–239.

    CAS  Google Scholar 

  • Seaward, M.R.D., Goyal, R., and Bylinska, E.A., 1978, Heavy metal content of some terricolous lichens from mineral-enriched sites in northern England,The Naturalist, 103: 135–141.

    Google Scholar 

  • Skipnes, O., Roalad, T., and Haug, A., 1976, Uptake of zinc and strontium by brown algae,Physiologia Plantarum, 34: 314–320.

    Article  Google Scholar 

  • Snelgar, W.P., Brown, D.H., and Green, T.G.A., 1980, A provisional survey of the interactions between net photosynthetic rate, respiratory rate, and thallus water content in some New Zealand cryptogams,New Zealand Journal of Botany, 18: 247–256.

    Google Scholar 

  • Turner, R.G., and Marshall, C., 1971, The accumulation of 65Zn by root homogenates of zinc-tolerant and non-tolerant clones ofAgrostistenuis Sibth.,New Phytologist, 70: 539–545.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Brown, D.H., Beckett, R.P. (1985). The Role of the Cell Wall in the Intracellular Uptake of Cations by Lichens. In: Brown, D.H. (eds) Lichen Physiology and Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2527-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2527-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9526-6

  • Online ISBN: 978-1-4613-2527-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics