Skip to main content

Biochemistry of Chemosensory Behavior in Prokaryotes and Unicellular Eukaryotes

  • Chapter
Membranes and Sensory Transduction

Abstract

Chemotaxis, a migratory response to a chemical gradient, serves a variety of purposes among microorganisms by means of a corresponding diversity of chemotactic mechanisms. Even when chemotaxis serves the same end, such as migration toward sources of food, the mechanism and stimulus specificity reflect a given organism’s unique needs. Bacteria such as Escherichia coli and Salmonella typhimurium have a refined chemotactic response to a variety of compounds signaling the presence of sources of carbon and nitrogen (Adler, 1975; Koshland, 1980a; Taylor and Laszlo, 1981). Representative amino acids and sugars are strong attractants for these bacteria (Mesibov and Adler, 1972; Adler et al, 1973). Likewise, Paramecium, which feeds on bacteria, is attracted to various excretion products of bacterial metabolism, such as lactose, acetate, folate, and ammonium ion (for a review of chemotaxis in protozoa, see Van Houten et al, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44: 341 – 356.

    Article  PubMed  CAS  Google Scholar 

  • Adler, J., and Dahl, M. M., 1967, A method for measuring the motility of bacteria and for comparing random and nonrandom motility, J. Gen. Microbiol. 46: 161 – 173.

    PubMed  CAS  Google Scholar 

  • Adler, J., and Epstein, W., 1974, Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia colichemotaxis, Proc. Natl. Acad. Sci. USA 71: 2895 – 2899.

    Article  PubMed  CAS  Google Scholar 

  • Adler, J., Hazelbauer, G. L., and Dahl, M. M., 1973, Chemotaxis toward sugars in Escherichia coli, J. Bacteriol. 115: 824 – 847.

    CAS  Google Scholar 

  • Aksamit, R. R., and Koshland, D. E., Jr., 1972, A ribose binding protein of Salmonella typhimurium, Biochem. Biophys. Res. Commun. 48: 1348 – 1353.

    Article  CAS  Google Scholar 

  • Aksamit, R. R., and Koshland, D. E., Jr., 1974, Identification of the ribose binding protein as the receptor for ribose chemotaxis in Salmonella typhimurium, Biochemistry 13: 4473 – 4478.

    Article  CAS  Google Scholar 

  • Alber, T., Fahnestock, M., Mowbray, S. L., and Petsko, G. A., 1981, Preliminary X-ray data for the galactose binding protein from Salmonella typhimurium, J. Mol. Biol. 147: 471 – 474.

    CAS  Google Scholar 

  • Alcantara, F., and Monk, M., 1974, Signal propagation during aggregation in the slime mould Dictyostelium discoideum, J. Gen. Microbiol. 85: 321 – 334.

    CAS  Google Scholar 

  • Alemany, S., Gil, M. G., and Mato, J. M., 1980, Regulation by guanosine 3′:5′-cyclic monophosphate of phospholipid methylation during chemotaxis in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 77: 6996 – 6999.

    Article  CAS  Google Scholar 

  • Almagor, M., Ron, A., and Bar-Tana, J., 1981, Chemotaxis in Tetrahymena thermophila, Cell Motil. 1: 261 – 268.

    Article  CAS  Google Scholar 

  • Anraku, Y., 1968, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins, J. Biol. Chem. 243: 3116 – 3122.

    PubMed  CAS  Google Scholar 

  • Armstrong, J. B., 1972, An S-adenosylmethionine requirement for chemotaxis in Escherichia coli, Can. J. Microbiol. 18: 1695 – 1701.

    CAS  Google Scholar 

  • Aswad, D., and Koshland, D. E., Jr., 1974, Role of methionine in bacterial chemotaxis, J. Bac- teriol. 118: 640 – 645.

    CAS  Google Scholar 

  • Aswad, D. W., and Koshland, D. E., Jr., 1975, Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium, J. Mol. Biol. 97: 207 – 223.

    CAS  Google Scholar 

  • Aswanikumar, S., Corcoran, B. A., Schiffman, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L., and Pert, C. B., 1977, Demonstration of a receptor on rabbit neutrophils for chemotactic peptides, Biochem. Biophys. Res. Commun. 74: 810 – 817.

    Article  PubMed  CAS  Google Scholar 

  • Becker, E. L., and Stossel, T. P., 1980, Chemotaxis, Fed. Proc. 39: 2949 – 2952.

    Google Scholar 

  • Beidler, L. M., 1954, A theory of taste stimulation, J. Gen. Physiol. 38: 133 – 139.

    Article  PubMed  CAS  Google Scholar 

  • Beidler, L. M., 1971, Taste receptor stimulation with salts and acids, in: Handbook of Sensory Physiology, Vol. 4, Pt. 2, ( L. M. Beidler, ed.), pp. 200 – 220, Springer-Verlag, New York.

    Google Scholar 

  • Berg, H. C., and Anderson, R. A., 1973, Bacteria swim by rotating their flagellar filaments, Nature (Lond.) 239: 380 – 382.

    Article  Google Scholar 

  • Berg, H. C., and Brown, A. D., 1972, Chemotaxis in E. colianalyzed by three-dimensional tracking, Nature (Lond.) 239: 500 – 504.

    Article  CAS  Google Scholar 

  • Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J. 20: 193 – 219.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and Tedesco, P. M., 1975, Transient response to chemotactic stimuli in Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 3235 – 3239.

    Article  CAS  Google Scholar 

  • Blum, J. J., and Hines, M., 1979, Biophysics of flagellar motility, Q. Rev. Biophys. 12: 103 – 180.

    Article  PubMed  CAS  Google Scholar 

  • Boucek, M. M., and Snyderman, R., 1976, Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride, Science 193: 905 – 907.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, A., and Simon, M. I., 1980, Multiple electrophoretic forms of methyl-accepting chemotaxis proteins generated by stimulus-elicited methylation in Escherichia coli, J. Bacteriol. 143: 809 – 815.

    CAS  Google Scholar 

  • Boyd, A., and Simon, M., 1982, Bacterial chemotaxis, Annu. Rev. Physiol. 44: 501 – 517.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, A., Krikos, A., and Simon, M., 1981, Sensory transducers of E. coliare encoded by homologous genes, Cell 26: 333 – 343.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, M., and Thorns, S., 1984, Caffeine blocks activation of cyclic AMP synthesis in Dictyostelium discoideum, Dev. Biol. 101: 136 – 146.

    Article  CAS  Google Scholar 

  • Burchard, R. P., 1980, Gliding motility of bacteria, Bioscience 30: 157 – 162.

    Article  Google Scholar 

  • Chelsky, D., and Dahlquist, F. W., 1980, Structural studies of methyl-accepting chemotaxis proteins of Escherichia coli: evidence for 5 multiple methylation sites, Proc. Natl Acad. Sci. USA 77: 2434 – 2438.

    Article  PubMed  CAS  Google Scholar 

  • Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl Acad. Sci. USA 75: 3943 – 3947.

    Article  PubMed  CAS  Google Scholar 

  • Clancy, M., Madill, K. A., and Wood, J. M., 1981, Genetic and biochemical requirements for chemotaxis to L-proline in Escherichia coli, J. Bacteriol 146: 902 – 906.

    CAS  Google Scholar 

  • Clarke, M., and Spudich, J. A., 1977, Nonmuscle contractile proteins: The role of actin and myosin in cell motility and shape determination, Annu. Rev. Biochem. 46: 797 – 822.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M., Bazari, W. L., and Kayman, S. C., 1980, Isolation and properties of calmodulin from Dictyostelium discoideum, J. Bacteriol. 141: 397 – 400.

    CAS  Google Scholar 

  • Clarke, S., and Koshland, D. E., Jr., 1979, Membrane receptors for aspartate and serine in bacterial chemotaxis, J. Biol. Chem. 254: 9695 – 9702.

    PubMed  CAS  Google Scholar 

  • Clarke, S., Sparrow, K., Panasenko, S., and Koshland, D. E., Jr., 1980, In vitromethylation of bacterial chemotaxis proteins: characterization of protein methyltransferase activity in crude extracts of Salmonella typhimurium, J. Supramol. Struct. 13: 315 – 328.

    CAS  Google Scholar 

  • Dahlquist, F. W., Lovely, P., and Koshland, D. E., Jr., 1972, Quantitative analysis of bacterial migration in chemotaxis, Nature New Biol. 236: 120 – 123.

    Article  PubMed  CAS  Google Scholar 

  • DeFranco, A. L., and Koshland, D. E., Jr., 1980, Multiple methylation in the processing of sensory signals during bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 77: 2429 - 2433.

    Article  PubMed  CAS  Google Scholar 

  • DeFranco, A. L., and Koshland, D. E., Jr., 1982, Construction and behavior of strains with mutations in two chemotaxis genes, J. Bacteriol. 150: 1297 – 1301.

    PubMed  CAS  Google Scholar 

  • Delbrück, M., and Reichardt, W., 1956, System analysis for the light growth reactions of Phycomyces, in: Cellular Mechanisms in Differentiation and Growth(D. Rudnick, ed.), pp. 3- 44, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • DePamphilis, M. L., and Adler, J., 1971, Fine structure and isolation of the hook-basal body complex of flagella from E. coliand B. subtilis, J. Bacteriol. 105: 396 – 407.

    CAS  Google Scholar 

  • Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., and Nultsch, W., 1977, Terminology of behavioral responses in motile microorganisms, Photochem. Photobiol. 26: 559 – 560.

    Article  Google Scholar 

  • Dinauer, M. C., MacKay, S. A., and Devreotes, P. N., 1980a, Cyclic 3′,5′-AMP relay in Dictyostelium discoideum. III. The relationship of cAMP synthesis and secretion during the cAMP signalling response, J. Cell Biol. 86: 537 – 544.

    Article  CAS  Google Scholar 

  • Dinauer, M. C., Steck, T. L., and Devreotes, P. N., 1980b, Cyclic 3′,5′-AMP relay in Dictyostelium discoideum. IV. Recovery of the cAMP signalling response after adaptation to cAMP, J. Cell Biol. 86:545–553.

    Article  CAS  Google Scholar 

  • Dinauer, M. C., Steck, T. L., and Devreotes, P. N., 1980c, Cyclic 3′,5′-AMP relay in Dictyostelium discoideum. V. Adaptation of the cAMP signalling response during cAMP stimulation, J. Cell Biol. 86: 554 – 561.

    Article  CAS  Google Scholar 

  • Donabedian, H., and Gallin, J. I., 1981, Deactivation of human neutrophil chemotaxis by chemoattractants: effect on receptors for the chemotactic factors fMet-Leu-Phe, J. Immunol. 127: 839 – 844.

    PubMed  CAS  Google Scholar 

  • Doughty, M. J., and Dryl, S., 1981, Control of ciliary activity in Paramecium: an analysis of chemosensory transduction in a eukaryotic unicellular organism, Prog. Neurobiol. 16: 1 – 115.

    Article  PubMed  CAS  Google Scholar 

  • Dryl, S., 1973, Chemotaxis in ciliate protozoa, in: Behavior of Microorganisms( A. Perez-Miravete, ed.), pp. 16 – 30, Plenum Press, New York.

    Google Scholar 

  • Dunlap, K., 1977, Localization of calcium channels in Paramecium caudatum, J. Physiol (Lond.) 271: 119 – 134.

    CAS  Google Scholar 

  • Durston, A. J., and Vork, F., 1979, A cinematographical study of the development of vitally stained Dictyostelium discoideum, J. Cell Sci. 36: 261 – 279.

    CAS  Google Scholar 

  • Dworkin, M., and Eide, D., 1983, Myxococcus xanthusdoes not respond chemotactically to moderate concentration gradients, J. Bacteriol. 154: 437 – 442.

    PubMed  CAS  Google Scholar 

  • Eckert, R., 1972, Bioelectric control of ciliary activity, Science 176: 473 – 481.

    Article  PubMed  CAS  Google Scholar 

  • Eisenbach, M., and Adler, J., 1981, Bacterial cell envelopes with functional flagella, J. Biol Chem. 256: 8807 – 8814.

    PubMed  CAS  Google Scholar 

  • Engström, P., and Hazelbauer, G. L., 1980, Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of E. colito chemical stimuli, Cell 20: 165 – 171.

    Article  PubMed  Google Scholar 

  • Engström, P., and Hazelbauer, G. L., 1982, Methyl-accepting chemotaxis proteins are distributed in the membrane independently from basal ends of bacterial flagella, Biochim. Biophys. Acta 686: 19 – 26.

    Article  PubMed  Google Scholar 

  • Fahnestock, M., and Koshland, D. E., Jr., 1979, Control of the receptor for galactose taxis in Salmonella typhimurium, J. Bacteriol. 137: 758 – 763.

    CAS  Google Scholar 

  • Fandrich, B., and Laszlo, D. J., 1981, Cytochrome oas the receptor for aerotaxis in Salmonella typhimurium, Fed. Proc. 40: 1637.

    Google Scholar 

  • Fernandez, H. N., and Hugli, T. E., 1978, Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin, J. Biol. Chem. 253: 6955 – 6964.

    PubMed  CAS  Google Scholar 

  • Fisher, P. R., Smith, E., and Williams, K. L., 1981, An extracellular chemical signal controlling phototactic behavior by D. discoideumslugs, Cell 23: 799 – 807.

    Article  PubMed  CAS  Google Scholar 

  • Freer, R. J., Day, A. R., Radding, J. A., Schiffman, E., Aswanikumar, S., Showell, H. J., and Becker, E. L., 1980, Further studies on the structural requirements for synthetic peptide chemoattractants, Biochemistry 19: 2404 – 2410.

    Article  PubMed  CAS  Google Scholar 

  • Gallin, J. I., Gallin, E. K., Malech, H. L., and Cramer, E. B., 1978, Structural and ionic events during leukocyte chemotaxis, in: Leukocyte Chemotaxis( J. I. Gallin and P. G. Quie, eds.), pp. 123 – 141, Raven Press, New York.

    Google Scholar 

  • Gerisch, G., 1982, Chemotaxis in Dictyostelium, Annu. Rev. Physiol. 44: 535 – 552.

    Article  CAS  Google Scholar 

  • Gerisch, G., Fromm, H., Huesgen, A., and Wick, U., 1975, Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyosteliumcells, Nature (Lond.) 255: 547 – 549.

    Article  CAS  Google Scholar 

  • Goetzl, E. J., and Pickett, W. C., 1980, Human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs), J. Immunol. 125: 1789 – 1791.

    PubMed  CAS  Google Scholar 

  • Goetzl, E. J., Foster, D. W., and Goldman, D. W., 1981, Isolation and partial characterization of membrane protein constituents of human neutrophil receptors for chemotactic formyl- methionyl peptides, Biochemistry 20: 5712 – 5722.

    Article  Google Scholar 

  • Goldman, D. J., Worobec, S. W., Siegel, R. B., Hecker, R. V., and Ordal, G. W., 1982, Chemotaxis in Bacillus subtilis: effects of attractants on the level of methylation of methyl-accepting chemotaxis proteins and the role of demethylation in the adaptation process, Biochemistry 21: 915 – 920.

    Article  PubMed  CAS  Google Scholar 

  • Goy, M. F., Springer, M. S., and Adler, J., 1977, Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation, Proc. Natl. Acad. Sci. USA 74: 4964 – 4968.

    Article  PubMed  CAS  Google Scholar 

  • Goy, M. F., Springer, M. S., and Adler, J., 1978, Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction, Cell 15: 1231 – 1240.

    Article  PubMed  CAS  Google Scholar 

  • Green, A. A., and Newell, P. C., 1975, Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum, Cell 6: 129 – 136.

    CAS  Google Scholar 

  • Hagen, D. C., Bretcher, A. P., and Kaiser, D., 1978, Synergism between morphogenic mutants of Myxococcus xanthus, Dev. Biol. 64: 284 – 296.

    Article  CAS  Google Scholar 

  • Hayashi, H., Koiwai, O., and Kozuka, M., 1979, Studies on bacterial chemotaxis. II. Effect of cheBand cheZmutations on the methylation of methyl-accepting chemotaxis protein of Escherichia coli, J. Biochem. 85: 1213 – 1223.

    CAS  Google Scholar 

  • Hazelbauer, G. L., 1975, The maltose chemoreceptor of Escherichia coli, J. Bacteriol. 122:206– 214.

    CAS  Google Scholar 

  • Hazelbauer, G. L., and Adler, J., 1971, Role of the galactose binding protein in chemotaxis of Escherichia colitoward galactose, Nature (Lond.) 230: 101 – 104.

    CAS  Google Scholar 

  • Hazelbauer, G. L., and EngstrOm, P., 1980, Parallel pathways for transduction of chemotactic signals in Escherichia coli, Nature (Lond.) 283: 98 – 100.

    Article  CAS  Google Scholar 

  • Hazelbauer, G. L., and Harayama, S., 1979, Mutants in transmission of chemotactic signals from two independent receptors of Escherichia coli, Cell 16: 617 – 625.

    CAS  Google Scholar 

  • Hazelbauer, G. L., and Parkinson, J. S., 1977, Bacterial chemotaxis, in: Microbial Interaction (Receptors and Recognition)( J. Reissig, ed.), pp. 59 – 98, Chapman and Hall, London.

    Google Scholar 

  • Hedblom, M. L., and Adler, J., 1980, Genetic and biochemical properties of Escherichia colimutants with defect in serine chemotaxis, J. Bacteriol. 144: 1048 – 1060.

    PubMed  CAS  Google Scholar 

  • Henderson, E. J., 1975, The cyclic adenosine 3′,5′-monophosphate receptor of Dictyostelium discoideum, J. Biol. Chem. 250: 4730 – 4736.

    CAS  Google Scholar 

  • Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and active transport, J. Gen. Physiol. 54:95s–109s.

    Article  CAS  Google Scholar 

  • Hill, A. V., 1936, Excitation and accommodation in nerve, Proc. R. Soc. (Lond.) [Biol.] B119: 305 – 354.

    Article  Google Scholar 

  • Ho, J., and McCurdy, H. D., 1979, Demonstration of positive chemotaxis to cyclic GMP and 5′-AMP in Myxococcus xanthusby means of a simple apparatus for generating stable concentration gradients, Can. J. Microbiol. 25: 1214 – 1218.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, J., and Kaiser, D., 1979a, Genetics of gliding motility in Myxococcus xanthus(Myxobacteriales): Two gene systems control movement, Mol. Gen. Genet. 171: 177 – 191.

    Article  Google Scholar 

  • Hodgkin, J., and Kaiser, D., 1979b, Genetics of gliding in Myococcus xanthus (Myxobacteriales): Genes controlling movement of single cells, Mol. Gen. Genet. 171:167–176.

    Article  Google Scholar 

  • Inouye, M., Inouye, S., and Zusman, D., 1979, Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus, Proc. Natl. Acad. Sci. USA76: 209 – 213.

    Article  CAS  Google Scholar 

  • Jennings, H. S., 1906, Behavior of Lower Animals, Indiana University Press, Bloomington, Indiana.

    Book  Google Scholar 

  • Kaiser, D., Manoil, C., and Dworkin, M., 1979, Myxobacteria: cell interactions, genetics and development, Annu. Rev. Microbiol. 33: 595 – 639.

    Article  PubMed  CAS  Google Scholar 

  • Keller, H. U., and Sorkin, E., 1966, Studies on chemotaxis. IV. The influence of serum factors on granulocyte locomotion, Immunology 10: 409 – 416.

    Google Scholar 

  • Kellerman, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coliK12. Involvement of a “periplasmic” maltose binding protein, Eur. J. Biochem. 47: 139 – 149.

    Article  Google Scholar 

  • Khan, S., and Macnab, R. M., 1980a, The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force, J. Mol. Biol. 138: 563 – 597.

    Article  CAS  Google Scholar 

  • Khan, S., and Macnab, R. M., 1980b, Proton chemical potential, proton electrical potential, and bacterial motility, J. Mol. Biol. 138:599–614.

    Article  CAS  Google Scholar 

  • Kihara, M., and Macnab, R. M., 1981, Cytoplasmic pH, pH taxis, and weak-acid repellent taxis in bacteria, J. Bacteriol. 148: 1209 – 1221.

    Google Scholar 

  • Kleene, S. J., Toews, M. L., and Adler, J., 1977, Isolation of glutamic acid methyl ester from an Escherichia colimembrane protein involved in chemotaxis, J. Biol Chem. 252: 3214 – 3218.

    PubMed  CAS  Google Scholar 

  • Kleene, S. J., Hobson, A. C., and Adler, J., 1979, Attractants and repellents influence methylation and demethylation of methyl-accepting chemotaxis proteins in an extract of Escherichia coli, Proc. Natl Acad. Sci. USA 76: 6309 – 6313.

    Article  CAS  Google Scholar 

  • Klein, C., and Juliani, M. H., 1977, cAMP-induced changes in cAMP-binding sites on D. discoideum amoebae, Cell 10:329–335.

    Google Scholar 

  • Koiwai, O., and Hayashi, H., 1979, Studies on bacterial chemotaxis. IV. Interaction of maltose receptor with a membrane-bound chemosensing component, J. Biochem. 86: 27 – 34.

    PubMed  CAS  Google Scholar 

  • Koiwai, O., Minoshima, S., and Hayashi, H., 1980, Studies on bacterial chemotaxis. V. Possible involvement of four species of the methyl-accepting chemotaxis protein in chemotaxis of Escherichia coli, J. Biochem. 87: 1365 – 1370.

    CAS  Google Scholar 

  • Komano, T., Inouye, S., and Inouye, M., 1980, Patterns of protein production in Myxococcus xanthusduring spore formation induced by glycerol, dimethyl sulfoxide and phenethyl alcohol, J. Bacteriol. 144: 1076 – 1082.

    PubMed  CAS  Google Scholar 

  • Komano, T., Brown, N., Inouye, S., and Inouye, M., 1982, Phosphorylation and methylation of protein during Myxococcus xanthusspore formation, J. Bacteriol. 151: 114 – 118.

    PubMed  CAS  Google Scholar 

  • Kondoh, H., 1980, Tumbling chemotaxis mutants of Escherichia coli: possible gene-dependent effect of methionine starvation, J. Bacteriol. 142: 527 – 534.

    PubMed  CAS  Google Scholar 

  • Kondoh, H., Ball, C. B., and Adler, J., 1979, Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 260 – 264.

    Article  CAS  Google Scholar 

  • Konijn, T. M., van der Meene, J. G. C., Bonner, J. T., and Barkley, D. S., 1967, The acrasin activity of adenosine-3′,5′-cyclic phosphate, Proc. Natl. Acad. Sci. USA 58: 1152 – 1154.

    Article  PubMed  CAS  Google Scholar 

  • Kort, E. N., Goy, M. F., Larsen, S. H., and Adler, J., 1975, Methylation of a membrane protein involved in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 72: 3939 – 3943.

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D. E., Jr., 1977, A response regulator model in a simple sensory system, Science 196: 1055 – 1063.

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D. E., Jr., 1980 a, Bacterial Chemotaxis as a Model Behavioral System. Distinguished Lecture Series of the Society of General Physiologists, Vol. 2, Raven Press, New York.

    Google Scholar 

  • Koshland, D. E., Jr., 1980b, Bacterial chemotaxis in relation to neurobiology, Annu. Rev. Neuroscience 3:43–76.

    Article  CAS  Google Scholar 

  • Koshland, D. E., Jr., 1981, Biochemistry of sensing and adaptation in a simple bacterial system, Annu. Rev. Biochem. 50: 765 – 782.

    Article  PubMed  CAS  Google Scholar 

  • Kuczmarski, E. R., and Spudich, J. A., 1980, Regulation of myosin self-assembly: phosphorylation of Dictyosteliumheavy chain inhibits formation of thick filaments, Proc. Natl. Acad. Sci. USA 77: 7292 – 7296.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlwein, H., and Reichenbach, H., 1981, Encyclopedia od Cinematography and Film, C893/ 1965, pp. 335–359, Inst. Wiss. Film, Gottingen.

    Google Scholar 

  • Kung, C., and Saimi, Y. 1982, The physiological basis of taxes in Paramecium, Annu. Rev. Physiol. 44: 519 – 534.

    CAS  Google Scholar 

  • Kung, C., Chang, S-Y., Satow, Y., Van Houten, J., and Hansma, H., 1975, Genetic dissection of behavior in Paramecium, Annu. Rev. Physiol. 44: 519 – 534.

    Google Scholar 

  • Lapidus, I. R., and Berg, H. C., 1982, Gliding motility of Cytophagasp strain U67, J. Bacteriol. 151: 384 – 398.

    PubMed  CAS  Google Scholar 

  • Larsen, S. H., Adler, J., Gargus, J. J., and Hogg, R. W., 1974, Chemomechanical coupling without ATP. The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. USA 71: 1239 – 1243.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, D. J., 1981, “The mechanism of aerotaxis in Salmonella typhimurium”Ph.D. thesis, Loma Linda University, Loma Linda, Calif.

    Google Scholar 

  • Laszlo, D. J., and Taylor, B. L., 1981, Aerotaxis in Salmonella typhimurium: the role of electron transport, J. Bacteriol. 145: 990 – 1001.

    PubMed  CAS  Google Scholar 

  • Liao, C. S., and Freer, R. J., 1980, Cryptic receptors for chemotactic peptides in rabbit neutrophils, Biochem. Biophys. Res. Commun, 93: 566 – 571.

    Article  PubMed  CAS  Google Scholar 

  • Loomis, W. F., 1975, Dictyostelium discoideum: A Developmental System, Academic Press, New York.

    Google Scholar 

  • Machemer, H., 1974a, Frequency and directional response of cilia to membrane potential changes in Paramecium, J. Comp. Physiol. 92: 293 – 316.

    Article  Google Scholar 

  • Machemer, H., 1974b, Ciliary activity and metachronism in protozoa, in: Cilia and Flagella (M. A. Sleigh, ed.), pp. 199–286, Academic Press, New York.

    Google Scholar 

  • Machemer, H., 1976, Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium, J. Exp. Biol. 65: 427 – 448.

    CAS  Google Scholar 

  • Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol. (Lond.) 296: 49 – 60.

    CAS  Google Scholar 

  • Macnab, R. M., 1977, Bacterial flagella rotating in bundles: a study in helical geometry, Proc. Natl. Acad. Sci. USA 74: 221 – 225.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., 1979, Locomotion in microbial plants, in: Encyclopedia of Plant Physiology, Vol. 7, ( W. Haupt and M. E. Feinleib, eds.), pp. 207 – 233, Springer-Verlag, New York.

    Google Scholar 

  • Macnab, R. M., 1982, Sensory reception in bacteria, in: Prokaryotic and Eukaryotic Flagella, Society for Experimental Biology Symposium No. XXXV( W. B. Amos and J. G. Duckett, eds.), pp. 77 – 104, Cambridge University Press, London.

    Google Scholar 

  • Macnab, R. M., and Koshland, D. E., Jr., 1972, The gradient sensing mechanism in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 69: 2509 – 2512.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. W., and Ornston, M. K., 1977, Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force, J. Mol. Biol. 112: 1 – 30.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, K., and Imae, Y., 1979, Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine, Proc. Natl. Acad. Sci. USA 76: 91 – 95.

    Article  PubMed  CAS  Google Scholar 

  • Malchow, D., and Gerisch, G., 1974, Short-term binding and hydrolysis of cyclic 3′,5′-adenosine monophosphate by aggregating Dictyosteliumcells, Proc. Natl. Acad. USA 71: 2423 – 2427.

    Article  CAS  Google Scholar 

  • Malchow, D., Bohme, R., and Rahmsdorf, H. J., 1981, Regulation of phosphorylation of myosin heavy chain during the chemotactic response of Dictyosteliumcells, Eur. J. Biochem. 117: 213 – 218.

    Article  PubMed  CAS  Google Scholar 

  • Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and Van der Drift, C., 1977, A protonmotive force drives bacterial flagella, Proc. Natl. Acad. Sci. USA 74: 3060 – 3064.

    Article  PubMed  CAS  Google Scholar 

  • Manson, M. D., Tedesco, P. M., and Berg, H. C., 1980, Energetics of flagellar rotation in bacteria, J. Mol. Biol. 138: 541 – 561.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J. P., 1978, Sexual chemotaxis and chemotropism in plants, in: Taxis and Behavior( G. L. Hazelbauer, ed.), pp. 169 – 203, Halsted Press, New York.

    Google Scholar 

  • Mato, J. M., and Malchow, D., 1978, Guanylate cyclase activation in response to chemotactic stimulation in Dictyostelium discoideum, FEBS Lett. 90: 119 – 122.

    Article  PubMed  CAS  Google Scholar 

  • Mato, J. M., and Marin-Cao, D., 1979, Protein and phospholipid methylation during chemotaxis in Dictyostelum discoideumand its relationship to calcium movement, Proc. Natl. Acad. Sci. USA 76: 6106 – 6109.

    Article  PubMed  CAS  Google Scholar 

  • Mato, J. M., Krens, F. A., van Haastert, P. J. M., and Konijn, T. M., 1977, 3’5’-cyclic AMP-dependent 3’5’-cyclic GMP accumulation in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 74:2348–2351.

    Article  PubMed  CAS  Google Scholar 

  • Mato, J. M., Jastorff, B., Morr, M., and Konijn, T. M., 1978, A model for cyclic AMP-chemoreceptor interaction in Dictyostelium discoideum, Biochim. Biophys. Acta 544:309– 314.

    CAS  Google Scholar 

  • Matsuura, S., Shioi, J., and Imae, Y., 1977, Motility in Bacillus subtilisdriven by an artificial protonmotive force, FEBS Lett. 82: 187 – 190.

    Article  CAS  Google Scholar 

  • Mesibov, R., and Adler, J., 1972, Chemotaxis toward amino acids in Escherichia coli, J. Bacteriol. 112: 315 – 326.

    PubMed  CAS  Google Scholar 

  • Miller, J. B., and Koshland, D. E., Jr., 1977, Sensory electrophysiology of bacterial: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 74: 4752 – 4756.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. B., and Koshland, D. E., Jr., 1980, Protonmotive force and bacterial sensing, J. Bacteriol. 141: 26 – 32.

    PubMed  CAS  Google Scholar 

  • Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leucocyte membranes, J. Cell Biol. 73: 428 – 444.

    Article  PubMed  CAS  Google Scholar 

  • Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203: 461 – 463.

    Article  PubMed  CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 1969, Ionic mechanisms controlling behavioral responses of Parameciumto mechanical stimulation, Science 164: 963 – 965.

    Article  PubMed  CAS  Google Scholar 

  • Naitoh, Y., Eckert, R., and Friedman, K., 1972, A regenerative calcium response in Paramecium, J. Exp. Biol. 56: 667 – 681.

    CAS  Google Scholar 

  • Nath, J., Flavin, M., and Schiffmann, E., 1981, Stimulation of tubulin tyrosylation in rabbit leukocytes evoked by the chemoattractant formyl-methionyl-leucyl-phenylalanine, J. Cell Biol. 91: 232 – 239.

    Article  PubMed  CAS  Google Scholar 

  • Niedel, J. E., Kahane, I., and Cuatrecasas, P., 1979, Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils, Science 205: 1412 – 1414.

    Article  PubMed  CAS  Google Scholar 

  • Niedel, J., Davis, J., and Cuatrecasas, P., 1980, Covalent affinity labeling of the formyl peptide chemotactic receptor, J. Biol. Chem. 255: 7063 – 7066.

    PubMed  CAS  Google Scholar 

  • Nikaido, H., and Nakae, T., 1979, The outer membrane of gram negative bacteria, Adv. Microb. Physiol. 20: 163 – 250.

    Article  PubMed  CAS  Google Scholar 

  • Niwano, M., and Taylor, B. L., 1982a, Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates, Proc. Natl. Acad. Sci. USA 79: 11 – 15.

    Article  CAS  Google Scholar 

  • Niwano, M., and Taylor, B. L., 19826, Requirement of CheB product for methylation-independent chemotaxis to oxygen in bacteria, Fed. Proc. 41:759.

    Google Scholar 

  • Nossal, R., and Zigmond, S. H., 1976, Chemotropism indices for polymorphonuclear leukocytes, Biophys, J. 16: 1171 – 1182.

    Article  CAS  Google Scholar 

  • O’Day, D. H., 1979, Aggregation during sexual development in Dictyostelium discoideum, Can. J. Microbiol. 25: 1416 – 1426.

    Google Scholar 

  • OAggregation during sexual development inDea, R. F., Viveros, O. H., Axelrod, J., Aswanikumar, S., Schiffman, E., and Corcoran, B. A., 1978, Rapid stimulation of protein carboxymethylation in leukocytes by a chemotactic peptide, Nature (Lond.) 272: 462 – 464.

    Article  Google Scholar 

  • Ogura, A., and Takahashi, K., 1976, Artificial deciliation causes loss of calcium-dependent responses in Paramecium, Nature (Lond.) 264: 170 – 172.

    Article  CAS  Google Scholar 

  • Ordal, G. W., 1977, Calcium ion regulates chemotactic behavior in bacteria, Nature (Lond.) 270: 66 – 67.

    Article  CAS  Google Scholar 

  • Ordal, G. W., and Adler, J., 1974, Isolation and complementation of mutants in galactose taxis and transport, J. Bacteriol. 117: 509 – 516.

    PubMed  CAS  Google Scholar 

  • Ordal, G. W., and Fields, R. B., 1977, A biochemical mechanism for bacterial chemotaxis, J. Theor. Biol. 68: 491 – 500.

    Article  PubMed  CAS  Google Scholar 

  • Ordal, G. W. and Goldman, D. J., 1975, Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis, Science 189: 802 – 805.

    Article  PubMed  CAS  Google Scholar 

  • Ordal, G. W., and Goldman, D. J., 1976, Chemotactic repellents of Bacillus subtilis, J. Mol Biol. 100: 103 – 108.

    Article  PubMed  CAS  Google Scholar 

  • Ordal, G. W., Villani, D. P., Nicholas, R. A., and Hamel, F. G., 1978, Independence of proline chemotaxis and transport in Bacillus subtilis, J. Biol Chem. 253: 4916 – 4919.

    PubMed  CAS  Google Scholar 

  • Pan, P., Hall, E. M., and Bonner, J. T., 1972, Folic acid as second chemotactic substance in the cellular slime moulds, Nature (Lond.) 237: 181 – 182.

    CAS  Google Scholar 

  • Panasenko, S. M., 1983, Protein and lipid methylation by methionine and s-adenosylmethionine in Myxococcus xanthus, Can. J. Microbiol. 29: 1224 – 1228.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, J. S., 1977, Behavioral genetics in bacteria, Annu. Rev. Genet. 11: 397 – 414.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, J. S., 1981, Genetics of bacterial chemotaxis, in: Genetics as a Tool in Microbiology( S. W. Glover and D. A. Hopwood, eds.), pp. 265 – 290, Cambridge University Press, London.

    Google Scholar 

  • Parkinson, J. S., and Revello, P. T., 1978, Sensory adaptation mutants of E. coli, Cell 15: 1221 – 1230.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, R. G., and Hogg, R. W., 1973, A comparison of the L-arabinose and D-galactose-binding proteins of Escherichia coliB/r, J. Biol Chem. 249: 3608 – 3614.

    Google Scholar 

  • Pate, J. L., and Chang, L. Y. E., 1979, Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes, Curr. Microbiol. 2: 59 – 64.

    Article  Google Scholar 

  • Pike, M. C., Kredich, N. M., and Snyderman, R., 1978, Requirement of S-adenosylmethioninemediated methylation for human monocyte chemotaxis, Proc. Natl. Acad. Sci. USA 75: 3928 – 3932.

    Article  PubMed  CAS  Google Scholar 

  • Poff, K. L., and Whitaker, B. D., 1979, Movement in slime molds, in: Encyclopedia of Plant Physiology, Vol. 7, pp. 355 S-adenosylmethioninemediated 382, Springer-Verlag, New York.

    Google Scholar 

  • Quiocho, F. A., Gilliland, G. L., Miller, D. M., and Newcomer, M. E., 1977, Crystallographic and chemical studies of L-arabinose-binding protein from E. coli, J. Supramol. Struct. 6: 503 – 518.

    Article  PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Meador, W. E., and Pflugrath, J. W., 1979, Preliminary crystallographic data of receptors for transport and chemotaxis in Escherichia coli: D-galactose and maltose binding proteins, J. Mol. Biol. 133: 181 – 184.

    Article  PubMed  CAS  Google Scholar 

  • Rashevsky, N., 1933, Outline of a physico-mathematical theory of excitation and inhibition, Protoplasma 20: 42 – 56.

    Article  CAS  Google Scholar 

  • Richarme, G., 1982, Interaction of maltose-binding protein with membrane vesicles of Escherichia coli, J. Bacteriol. 149: 662 – 667.

    PubMed  CAS  Google Scholar 

  • Robertson, A., Drage, D. J., and Cohen, M. H., 1972, Control of aggregation in Dictyostelium discoideumby an external periodic pulse of cyclic adenosine monophosphate, Science 175: 333 – 335.

    Article  PubMed  CAS  Google Scholar 

  • Rollins, C., and Dahlquist, F. W., 1981, The methyl-accepting chemotaxis proteins of E. coli: a repellent-stimulated, covalent modification, distinct from methylation, Cell 25: 333 – 340.

    Article  PubMed  CAS  Google Scholar 

  • Roos, W., Malchow, D., and Gerisch, G., 1977, Adenylate cyclase and the control of cell differentiation in Dictyostelium discoideum, Cell Diff. 6: 229 – 239.

    CAS  Google Scholar 

  • Rossier, C., Eitle, E., van Driel, R., and Gerisch, G., 1980, Biochemical regulation of cell development and aggregation in Dictyostelium discoideum, in: The Eukaryotic Microbial Cell( G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 405 – 424, Cambridge University Press, London.

    Google Scholar 

  • Rubik, B. A., and Koshland, D. E., Jr., 1978, Potentiation, desensitization, and inversion of response in bacterial sensing of chemical stimuli, Proc. Natl. Acad. Sci. USA 75: 2820 – 2824.

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg, G. D., 1978, “The multiplicity of glutamate and aspartate transport systems in Escherichia coli,” Ph.D. Thesis, University of California, Riverside.

    Google Scholar 

  • Schiffmann, E., 1982, Leukocyte chemotaxis, Annu. Rev. Physiol. 44: 553 – 568.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1975, N-Formylmethionyl peptides as che- moattractants for leucocytes, Proc. Natl Acad. Sci. USA 72: 1059 – 1062.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann, E., O’Dea, R. F., Chiang, P. K., Venkatasubramanian, K., Corcoran, B., Hirata, F., and Axelrod, J., 1979, Role for methylation-leukocyte chemotaxis, in: Modulation of Protein Function, ICN-UCLA Symposium, Vol. 13 ( D. E. Atkinson and C. F. Fox, eds.), pp. 299 – 313, Academic Press, New York.

    Google Scholar 

  • Schiffmann, E., Aswanikumar, S., Venkatasubramanian, K., Corcoran, B. A., Pert, C. B., Brown, J., Gross, E., Day, A. R., Freer, R. J., Showell, H. J., and Becker, E. L., 1980, Some characteristics of the neutrophil receptor for the chemotactic peptides, FEBS Lett. 117: 1 – 7.

    Article  PubMed  CAS  Google Scholar 

  • Schimkets, L. J., Dworkin, M., and Keller, K. H., 1979, A method for establishing stable concentration gradients in agar suitable for studying chemotaxis on a solid surface, Can. J. Microbiol 25: 1460 – 1467.

    Article  Google Scholar 

  • Segall, J. E., Manson, M. D., and Berg, H. C., 1982, Signal processing times in bacterial chemotaxis, Nature (Lond.) 296: 855 – 857.

    Article  CAS  Google Scholar 

  • Shaffer, B. M., 1975, Secretion of cyclic AMP induced by cyclic AMP in the cellular slime mold Dictyostelium discoideum, Nature (Lond.) 255: 549 – 552.

    Article  CAS  Google Scholar 

  • Sherris, D., and Parkinson, J. S., 1981, Posttranslational processing of methyl-accepting chemotaxis proteins in Escherichia coli, Proc. Natl Acad. Sci. USA 78: 6051 – 6055.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, O., Suthers, H. L. B., and Bonner, J. T., 1982, Chemical identity of the acrasin of the cellular slime mold Polysphondylium violaceum, Proc. Natl. Acad. Sci. USA 79: 7376 – 7379.

    Article  PubMed  CAS  Google Scholar 

  • Shioi, J., Shusuke, M., and Imae, Y., 1980, Quantitative measurements of proton motive force and motility in Bacillus subtilis, J. Bacteriol. 144: 891 – 897.

    PubMed  CAS  Google Scholar 

  • Shioi, J., Thomsen, G. E., Rowsell, E. H., and Taylor, B. L., 1982a, Protonmotive force in bacterial chemotaxis to oxygen, Fed. Proc. 41: 759.

    Google Scholar 

  • Shioi, J., Galloway, R. J., Niwano, M., Chinnock, R. E., and Taylor, B. L., 19826, Requirement of ATP in bacterial chemotaxis, J. Biol. Chem. 257:7969–7975.

    Google Scholar 

  • Silhavy, T. J., Szmelcman, S., Boos, W., and Schwartz, M., 1975, On the significance of the retention of ligand by protein, Proc. Natl. Acad. Sci. USA 72: 2120 – 2124.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, M., and Simon, M., 1973, Genetic analysis of bacteriophage Mu-induced flagellar mutants in Escherichia coli, J. Bacteriol. 116: 114 – 122.

    PubMed  CAS  Google Scholar 

  • Silverman, M., and Simon, M., 1974, Flagellar rotation and the mechanism of bacterial motility, Nature (Lond.) 249: 73 – 74.

    Article  CAS  Google Scholar 

  • Silverman, M., and Simon, M., 1977, Chemotaxis in Escherichia coli: Methylation of chegene products, Proc. Natl. Acad. Sci. USA 74: 3317 – 3321.

    Article  PubMed  CAS  Google Scholar 

  • Simchowitz, L., Fischbein, L. C., Spilberg, I., and Atkinson, J. P., 1980, Transient elevation in intracellular cyclic AMP by chemotactic factors, Immunol. 124: 1482 – 1491.

    CAS  Google Scholar 

  • Slonczewski, J. L., Macnab, R. M., Alger, J. R., and Castle, A. M., 1982, Effects of pH and repellent tactic stimuli on protein methylation levels in Escherichia coli, J. Bacteriol. 152: 384 – 399.

    PubMed  CAS  Google Scholar 

  • Snyder, M., Stock, J. B., and Koshland, D. E., Jr., 1981, Role of membrane potential and calcium in chemotactic sensing by bacteria, J. Mol. Biol. 149: 241 – 257.

    Article  PubMed  CAS  Google Scholar 

  • Snyderman, R., and Fudman, E. J., 1980, Demonstration of a chemotactic factor receptor on macrophages, J. Immunol. 124: 2754 – 2757.

    PubMed  CAS  Google Scholar 

  • Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science 213: 830 – 837.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M.S., Kort, E. N., Larsen, S. H., Ordal, G.W., Reader, R.W., and Adler, J., 1975, Role of methionine in bacterial chemotaxis: requirement for tumbling and involvement in information processing, Proc. Natl. Acad. Sci. USA 72: 4640 – 4644.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S., Goy, M. F., and Adler, J., 1977a, Sensory transduction in Escherichia coli: a requirement for methionine in sensory adaptation, Proc. Natl. Acad. Sci. USA 74:183–187.

    Article  CAS  Google Scholar 

  • Springer, M. S., Goy, M. F., and Adler, J., 1977b, Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins, Proc. Natl. Acad. Sci. USA 74:3312–3316.

    Article  CAS  Google Scholar 

  • Springer, M. S., Goy, M. F., and Adler, J., 1979, Protein methylation in behavioral control mechanism and in signal transduction, Nature (Lond.) 280: 279 – 284.

    Article  CAS  Google Scholar 

  • Springer, M. S., Zanolari, B., and Pierzchala, P. A., 1982, Ordered methylation of the methyl- accepting chemotaxis proteins of Escherichia coli, J. Biol. Chem. 257: 6861 – 6866.

    PubMed  CAS  Google Scholar 

  • Springer, W. R., and Koshland, D. E., Jr., 1977, Identification of a protein methyltransferase as the cheRgene product in the bacterial sensing system, Proc. Natl. Acad. Sci. USA 74: 533 – 537.

    Article  PubMed  CAS  Google Scholar 

  • Spudich, J. L., and Koshland, D. E., Jr., 1975, Quantitation of the sensory response in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 72: 710 – 713.

    Article  PubMed  CAS  Google Scholar 

  • Stendahl, O. I., and Stossel, T. P., 1980, Actin-binding protein amplifies actomyosin concentration, and gelsolin confers calcium control on direction of contraction, Biochem. Biophys. Res. Commun. 92: 675 – 681.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., and Koshland, D. E., Jr., 1978, A protein methylesterase involved in bacterial sensing, Proc. Natl. Acad. Sci. USA 75: 3659 – 3663.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., and Koshland, D. E., Jr., 1981, Changing reactivity of receptor carboxyl groups during bacterial sensing, J. Biol. Chem. 256: 10826 – 10833

    PubMed  CAS  Google Scholar 

  • Stock, J. B., Maderis, A. M., and Koshland, D. E., Jr., 1981, Bacterial chemotaxis in the absence of receptor carboxyl-methylation, Cell 27: 37 – 44.

    Article  PubMed  CAS  Google Scholar 

  • Stossel, T. P., 1978, The mechanism of leukocyte locomotion, in: Leukocyte Chemotaxis( J. I. Gallin and P. G. Quie, eds.), pp. 143 – 160, Raven Press, New York.

    Google Scholar 

  • Strange, P. G., and Koshland, D. E., Jr., 1976, Receptor interactions in a signaling system: Competition between ribose receptor and galactose receptor in the chemotactic response, Proc. Natl. Acad. Sci. USA 73: 762 – 766.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, S. J., and Zigmond, S. H., 1980, Chemotactic peptide receptor modulation in polymorphonuclear leukocytes, J. Cell. Biol. 85: 703 – 711.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, H., Kurihara, K., and Kobatake, Y., 1980, Changes in membrane potential and membrane fluidity in Tetrahymena pyriformisin association with chemoreception of hydrophobic stimuli: fluorescence studies, Biochemistry 19: 5339 – 5344.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, B. L., and Laszlo, D. J., 1981, The role of proteins in chemical perception in bacteria, in: Perception of Behavioral Chemicals( D. M. Norris, ed.), pp. 1 – 27, Elsevier, Amsterdam.

    Google Scholar 

  • Taylor, B. L., and Shioi, J., 1982, Protonmotive force as a signal in bacterial sensory transduction, Twelfth International Congress of Biochemistry, Perth.

    Google Scholar 

  • Taylor, B. L., Miller, J. B., Warrick, H. M., and Koshland, D. E., Jr., 1979, Electron acceptor taxis and blue light effect on bacterial chemotaxis, J. Bacteriol. 140: 567 – 573.

    PubMed  CAS  Google Scholar 

  • Toews, M. L., and Adler, J., 1979, Methanol formation in vivofrom methylated chemotaxis proteins in Escherichia coli, J. Biol. Chem. 254: 1761 – 1764.

    CAS  Google Scholar 

  • Toews, M. L., Goy, M. F., Springer, M. S., and Adler, J., 1979, Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 5544 – 5548.

    Article  CAS  Google Scholar 

  • Tomchik, K. J., and Devreotes, P. N., 1981, Adenosine 3′-5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography, Science 212: 443 – 446.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, N., Macnab, R. M., and Koshland, D. E., Jr., 1973, Common mechanism for repellents and attractants in bacterial chemotaxis, Science 181: 60 – 63.

    Article  PubMed  CAS  Google Scholar 

  • Tso, W.-W., and Adler, J., 1974, Negative chemotaxis in Escherichia coli, J. Bacteriol. 118: 560 – 576.

    CAS  Google Scholar 

  • Van der Werf, P., and Koshland, D. E., Jr., 1977, Identification of a gamma-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis, J. Biol. Chem. 252: 2793 – 2795.

    Google Scholar 

  • Van Driel, R., 1981, Binding of the chemoattractant folic acid by Dictyostelium discoideumcells, Eur. J. Biochem. 115: 391 – 396.

    Article  PubMed  Google Scholar 

  • Van Haastert, P. J. M., Van Walsum, H., and Pasveer, F. J., 1982a, Nonequilibrium kinetics of a cyclic GMP-binding protein in Dictyostelium discoideum, J. Cell. Biol. 94: 271 – 278.

    Article  Google Scholar 

  • Van Haastert, P. J. M., van Lookeren Campagne, M. M., and Ross, F. M., 1982b, Altered cGMP-phosphodiesterase activity in chemotactic mutants of Dictyostelium discoideum, FEBS Lett. 147:149–152.

    Article  Google Scholar 

  • Van Houten, J., 1977, A mutant of Parameciumdefective in chemotaxis, Science 198: 746 – 748.

    Article  Google Scholar 

  • Van Houten, J., 1978, Two mechanisms of chemotaxis in Paramecium, J. Comp. Physiol. 127: 167 – 174.

    Article  Google Scholar 

  • Van Houten, J., 1979, Membrane potential changes during chemokinesis in Paramecium, Science 204: 1100 – 1103.

    Article  PubMed  Google Scholar 

  • Van Houten, J., 1981, Chemosensory transduction in Paramecium: role of membrane potential, Olfact. Taste 7: 53 – 56.

    Google Scholar 

  • Van Houten, J., Hauser, D. C. R., and Levandowsky, M., 1981, Chemosensory behavior in protozoa, in: Biochemistry and Physiology of Protozoa, Vol. 4 ( M. Levandowsky and S. H. Hunter, eds.), pp. 67 – 124, Academic Press, New York.

    Google Scholar 

  • Varnum, B., and Soil, D. R., 1981, Chemoresponsiveness to cAMP and folic acid during growth, development and dedifferentiation in Dictyostelium discoideum, Cell Diff. 18: 151 – 160

    CAS  Google Scholar 

  • Vitkauskas, G., Showell, H. J., and Becker, E. L., 1980, Specific binding of synthetic chemotactic peptides to rabbit peritoneal neutrophils: effects on dissociability of bound peptide, receptor activity and subsequent biologic responsiveness (deactivation), Mol. Immunol. 17: 171 – 180.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E. A., and Koshland, D. E., Jr., 1980, Receptor structure in the bacterial sensing system, Proc. Natl. Acad. Sci. USA 77: 7157 – 7161.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E. A., Mowry, K. L., Clegg, D. O., and Koshland, D. E., Jr., 1982, Tandem duplication and multiple functions of a receptor gene in bacterial chemotaxis, J. Biol. Chem. 257:4673- 4676.

    Google Scholar 

  • Warner, F. D., 1974, The fine structure of ciliary and flagellar axonemes, in: Cilia and Flagella( M. A. Sleigh, ed.), pp. 11 – 37, Academic Press, London.

    Google Scholar 

  • Warrick, H. M., Taylor, B. L., and Koshland, D. E., Jr., 1977, Chemotactic mechanism of Salmonella typhimurium: preliminary mapping and characterization of mutants, J. Bacteriol. 130: 223 – 231.

    PubMed  CAS  Google Scholar 

  • Wedner, H. J., Sinchowitz, L., Atkinson, J., and Stenson, W., 1980, Chemotactic factors induce rapid phosphorylation of a 90,000 dalton protein in human PMN leukocytes, Fed. Proc.39: 1950 (abst).

    Google Scholar 

  • Wick, U., Malchow, D., and Gerisch, G., 1978, Cyclic AMP stimulated calcium influx into aggregating cells of Dictyostelium discoideum, Cell Biol. Int. Rep. 2:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K. L., 1982, Molecules involved in morphogenesis in the multicellular stage of Dictyostelium discoideum, Thirty-third Mosbach Colloquium, in: Biochemistry of Differentiation and Morphogenesis( Z. Jaenicke, ed.), pp. 231 – 246, Springer-Verlag, Berlin.

    Google Scholar 

  • Williams, L. T., Snyderman, R., Pike, M. C., and Lefkowitz, R. J., 1977, Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. USA 74: 1204 – 1208.

    Article  PubMed  CAS  Google Scholar 

  • Willis, R. C., and Furlong, C. E., 1974, Purification and properties of a ribose-binding protein from Escherichia coli, J. Biol. Chem. 249: 6926 – 6929.

    PubMed  CAS  Google Scholar 

  • Wurster, B., and Butz, U., 1980, Reversible binding of the chemoattractant folic acid to cells of Dictyostelium discoideum, Eur. J. Biochem. 109: 613 - 618.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, S. H., 1977, The ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Cell Biol.75: 606 - 616.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, S. H., 1978, Chemotaxis by polymorphonuclear leukocytes, J. Cell Biol. 77: 269 – 287.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, S. H., and Hirsch, J. G., 1972, Effects of cytochalasin B on polymorphonuclear leukocyte locomotion, phagocytosis and glycolysis, Exp. Cell Res. 73: 383 – 393.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, S. H., and Sullivan, S. J., 1979, Sensory adaptation of leukocytes to chemotactic peptides, J. Cell Biol. 82: 517 – 527.

    Article  PubMed  CAS  Google Scholar 

  • Zukin, R. S., 1979, Evidence for a conformational change in the Escherichia coli: maltose receptor by excited-state fluorescence lifetime data, Biochemistry 18: 2139 – 2145.

    Article  PubMed  CAS  Google Scholar 

  • Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr., 1977a, Use of a distant reporter group as evidence for a conformational change in a sensory receptor, Proc. Natl. Acad. Sci. USA 74: 1932 – 1936.

    Article  CAS  Google Scholar 

  • Zukin, R. S., Strange, P. G., Heavy, L. R., and Koshland, D. E., Jr., 1977b, Properties of the galactose-binding protein of Salmonella typhimurium and Escherichia coli, Biochemistry 16:381–386.

    Article  CAS  Google Scholar 

  • Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr., 1979, Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules, Biochemistry 18: 5599 – 5605.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Taylor, B.L., Panasenko, S.M. (1984). Biochemistry of Chemosensory Behavior in Prokaryotes and Unicellular Eukaryotes. In: Colombetti, G., Lenci, F. (eds) Membranes and Sensory Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2675-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2675-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9665-2

  • Online ISBN: 978-1-4613-2675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics