Skip to main content

Behavioural Analysis of Spatial Vision in Insects

  • Chapter
Photoreception and Vision in Invertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

Two aspects of spatial visual orientation in insects constitute the central theme of this chapter: The detection of movement and the evaluation of the position of contrast elements in the visual world. In the first section the visual stimulus situation of an insect moving freely in its natural surround is described. The received “flow field” can be decomposed into three components which result from rotatory and translatory self-movement of the animal and from moving objects (e.g. birds). The next section on basic behavioural phenomena outlines the techniques of open- and closed-loop experiments and describes a few simple experiments on visual movement and position detection in flies. On the basis of these experiments an expression is derived which describes the rotatory component of a fly’s flight path through space. The equation is equivalent to the phenomenological equation of Reichardt and Poggio (1976). The third section investigates the basic principles underlying movement and position detection. Comparison of two schemes for movement detection, the gradient scheme and the correlation scheme, with measured behavioural responses demonstrates that the visual system of flies utilises a correlation-based mechanism for the detection of large- field movement. For position detection again two schemes are discussed which are based on flicker detection and movement detection. A final decision on which of the two schemes might be more relevant for fixation and tracking of moving objects by flies seems not yet possible. In the fourth section interactions between elementary movement and position detectors are deduced from behavioural experiments. In the discussion various more sophisticated aspects of visual spatial orientation behavior of insects are reviewed with emphasis on recent literature (1979 & later).

Oh, for a life of sensations rather than of thoughts! John Keats to Benjamin Bailey, 22 November 1817.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A.M. (1979) Visual scanning in honey bees. J. Comp. Physiol. 130: 173–182.

    Google Scholar 

  • Arnett, D.W. (1972) Spatial and temporal integration properties of units in first optic ganglion of dipterans. J. Neurophysiol. 35: 429–444.

    Google Scholar 

  • Barlow, H.B. & Levick, W.R. (1965) The mechanism of directionally sensitive units in rabbit’s retina. J. Physiol. 178: 477–504.

    Google Scholar 

  • Bauer, T. (1981) Prey capture and structure of the visual space of an insect that hunts by sight on the litter layer (Notiophilus biguttatus F., Carabidae, Coleoptera). Behav. Ecol. Sociobiol. 8: 91–97.

    Google Scholar 

  • Bauer, T. (1982) Predation by a carabid beetle specialized for catching Collembola. Pedobiol. 24: 169–179.

    Google Scholar 

  • Blondeau, J. ( 1981 a) Aerodynamic capabilities of flies, as revealed by a new technique. J. Exp. Biol. 92: 155–163.

    Google Scholar 

  • Blondeau, J. ( 1981 b) Electrically evoked course control in the fly Calliphora erythrocephala. J. Exp. Biol. 92: 143–153.

    Google Scholar 

  • Blondeau, J. & Heisenberg, M. (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. J. Comp. Physiol. 145: 321–329.

    Google Scholar 

  • Bolz, J. & Varju, D. (1980) Head movements of the mealworm beetle Tenebrio molitor. II. Responses to rotating panoramas. Biol. Cybern. 36: 117–124.

    Google Scholar 

  • Buchner, E. (1974) Bewegungsperzeption in einem System mit gerastertem Eingang. Ph.D. Thesis, University of Tübingen. 86 pages.

    Google Scholar 

  • Buchner, E. (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101.

    Google Scholar 

  • Buchner, E. & Buchner, S. (1983) Neuroanatomical mapping of visually induced nervous activity in insects by 3H-deoxyglucose. (This volume)

    Google Scholar 

  • Buchner, E., Götz, K.G. & Straub, C. (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol. Cybern. 31: 235–242.

    Google Scholar 

  • Bülthoff, H. (1981) Figure-ground discrimination in the visual system of Drosophila melanogaster. Biol. Cybern. 41: 139–145.

    Google Scholar 

  • Bülthoff, H. ( 1982 a) Drosophila mutants disturbed in visual orientation. I. Mutants affected in early visual processing. Biol. Cybern. 45: 63–70.

    Google Scholar 

  • Bülthoff, H. ( 1982 b) Drosophila mutants disturbed in visual orientation. II. Mutants affected in movement and position computation. Biol. Cybern. 41: 71–77.

    Google Scholar 

  • Bülthoff, H. & Götz, K.G. (1979) Analogous motion illusion in man and fly. Nature (Lond.) 278: 636–638

    Google Scholar 

  • Bülthoff, H., Götz, K.G. & Herre, M. (1982) Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster. J. Comp. Physiol. 148: 471–481.

    Google Scholar 

  • Bülthoff, H., Poggio, T. & Wehrhahn, C. (1980) 3-D analysis of the flight trajectories of flies (Drosophila melanogaster). Z. Naturforsch. 35c: 811–815.

    Google Scholar 

  • Burkhardt, D. & de la Motte, I. (1983) How stalk-eyed flies eye stalk- eyed flies: Observations and measurements of the eyes of Cyrtodiopsis (Diopsidae, Diptera). J. Comp. Physiol. (In press).

    Google Scholar 

  • Burr, D.C. & Ross, J. (1982) Contrast sensitivity at high velocities. Vision Res. 22: 479–484.

    Google Scholar 

  • Cartwright, B.A. & Collett, T.S. (1982) How honey bees use landmarks to guide their return to a food source. Nature (Lond.) 295: 560–564.

    Google Scholar 

  • Catton, W.T. (1982) Effects of stimulus area and intensity on the on/off ratio of some locust visual interneurons. 3. Insect. Physiol. 28: 285–292.

    Google Scholar 

  • Chillemi, S. & Taddei-Ferretti, C. (1981) Landing reaction of Musca domestica. VI Neurones responding to stimuli that elicit the landing response in the fly. J. Exp. Biol. 94: 105–118

    Google Scholar 

  • Collett, T.S. (1978) Peering - a locust behaviour pattern for obtaining motion parallax information. J. Exp. Biol. 76: 237–241.

    Google Scholar 

  • Collett, T.S. ( 1980 a) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J. Comp. Physiol. 140: 145–158.

    Google Scholar 

  • Collett, T.S. ( 1980 b) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J. Comp. Physiol. 138: 271–281.

    Google Scholar 

  • Collett, T.S. & Harkness, L.I.K. (1982) Depth vision in animals. In: Analysis of Visual Behaviour. Ed. D.J. Ingle, M.A. Goodale & R.J.W. Mansfield. Cambridge, Mass. MIT Press, p. 111–176.

    Google Scholar 

  • Collett, T.S. & Land, M.F. ( 1975 a) Visual spatial memory in a hoverfly. J. Comp. Physiol. 100: 59–84.

    Google Scholar 

  • Collett, T.S. & Land, M.F. ( 1975 b) Visual control of flight behavior in the hoverfly, Syritta pipiens. J. Comp. Physiol. 99: 1–66.

    Google Scholar 

  • Collett, T.S. & Land, M.F. (1978) How hoverflies compute interception courses. J. Comp. Physiol. 125: 191–204.

    Google Scholar 

  • Cook,R. (1979) The courtship tracking of Drosophila melanogaster. Biol. Cybern. 34: 91–106.

    Google Scholar 

  • Cook,R. (1980) The extend of visual control in the courtship tracking of D. melanogaster. Biol. Cybern. 37: 41–51.

    Google Scholar 

  • Cook,R. (1981) Sex-specific tracking identified in single mosaic Drosophila. Naturwiss. 68: 267–268.

    Google Scholar 

  • David, C.T. (1978) The relationship between body angle and flight speed in free-flying Drosophila. Physiol. Entomol. 3: 191–195.

    Google Scholar 

  • David, C.T. ( 1979 a) Height control by free-flying Drosophila. Physiol. Entomol. 4: 209–216.

    Google Scholar 

  • David, C.T. ( 1979 b) Optomotor control of speed and height by free- flying Drosophila. J. Exp. Biol. 82: 389–392.

    Google Scholar 

  • David, C.T. ( 1982 a) Competition between fixed and moving stripes in the control of orientation by flying Drosophila. Physiol. Entomol. 7: 151–156.

    Google Scholar 

  • David, C.T. ( 1982 b) Compensation for height in the control of groundspeed by Drosophila in a new, “barber’s pole” wind tunnel. J. Comp. Physiol. 147: 485–493.

    Google Scholar 

  • Derham, W. (1713) Physico-Theology. Boyle Lecture for 1711, London.

    Google Scholar 

  • Dichgans, J., Körner, F. & Voigt, K. (1969) Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteilheit. Psychol. Forsch. 32: 277–295.

    Google Scholar 

  • Diener, H.C., Wist, E.R., Dichgans, J. & Brandt, T. (1976) The spatial frequency effect on perceived velocity. Vision Res. 16: 169–176.

    Google Scholar 

  • Doom, A.J. van, & Koenderink, J.J. (1976) A directionally sensitive network. Biol. Cybern. 21: 161–170.

    Google Scholar 

  • Dubs, A. (1982) The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J. Comp. Physiol. 146: 321–343.

    Google Scholar 

  • Dvorak, D., Srinivasan, M.V. & French, A.S. (1980) The contrast sensitivity of fly movement detecting neurons. Vision Res. 20: 397–407.

    Google Scholar 

  • Eckert, H. (1971) Die spektrale Empfindlichkeit des Komplexauges von Musca ( Bestimmung aus Messungen der optomotorischen Reaktionen). Kybernetik 9: 145–156.

    Google Scholar 

  • Eckert, H. (1973) Optomotorische Untersuchungen zum visuellen System der Stubenfliege Musca domestica. Bestimmung des optischen Auflösungsvermögens, der Kontrastempfindlichkeit und der Licht-flüsse in den Rezeptoren der Komplexaugen als Funktion der mittleren Umweltleuchtdichte. Kybernetik 14: 1–23.

    Google Scholar 

  • Eckert, H. (1980) Orientation sensitivity of the visual movement detection system activating the landing response in the blowflies, Calliphora and Phaenicia: A behavioural investigation. Biol. Cybern. 37: 235–247.

    Google Scholar 

  • Eckert, H. (1982) Radial pattern expansion drives the landing response of the blowfly, Calliphora. Naturwiss. 69: 348–349.

    Google Scholar 

  • Eckert, H. & Hamdorf, K. (1980) Excitatory and inhibitory response components in the landing response of the blowfly, Calliphora erythrocephala. 3. Comp. Physiol. 138: 253–264.

    Google Scholar 

  • Eckert, H. & Hamdorf, K. (1981) The contrast frequency dependence: A criterion for judging the non-participation of neurones in the control of behavioural responses. J. Comp. Physiol. 145: 241–247.

    Google Scholar 

  • Erber, J. (1982) Movement learning of free flying honeybees. J. Comp. Physiol. 146: 273–282.

    Google Scholar 

  • Eriksson, E.S. (1980) Movement parallax and distance perception in the grasshopper. J. Exp. Biol. 86: 337–340.

    Google Scholar 

  • Evered, D., O’Connor, M. & Whelan, J. (Eds.) (1982) Neuropharmacology of Insects. Ciba Foundation symposium 88. London, Pitman. 330 pages.

    Google Scholar 

  • Fermi, G. & Reichardt, W. (1963) Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2: 15–28.

    Google Scholar 

  • Fischbach, K.F. (1981) Habituation and sensitization of the landing response of Drosophila melanogaster. Naturwiss. 68: 332.

    Google Scholar 

  • Fischbach, K.F. & Heisenberg, M. (1981) Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and normal optomotor yaw response. Proc. Natl. Acad. Sei. USA 78: 1105–1109.

    Google Scholar 

  • Folkers, E. (1982) Visual learning and memory of Drosophila melanogaster, wild type C-S and the mutants dunce, amnesiac, turnip and rutabaga. J. Insect. Physiol. 28: 535–539.

    Google Scholar 

  • Folkers, E. & Spatz, H.C. (1981) Visual learning-behavior in Drosophila melanogaster wildtype CS. J. Insect Physiol. 27: 615–622.

    Google Scholar 

  • Fraenkel, G. & Pringle, J.W.S. (1938) Halteres as gyroscopic organs of equilibrium. Nature (Lond.) 141: 919.

    Google Scholar 

  • Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidelberg, New York, Springer Verlag, p. 97–125.

    Google Scholar 

  • Franceschini, N. (1983) The retinal mosaic of the fly compound eye. (This volume).

    Google Scholar 

  • Gavel, L. von (1939) Die kritische Streifenbreite als Maß für die Sehschärfe bei Drosophila melanogaster. Z. vergl. Physiol. 27: 80–135.

    Google Scholar 

  • Geiger, G. (1974) Optomotor responses of the fly Musca domestica to transient stimuli of edges and stripes. Kybernetik 16: 37–43.

    Google Scholar 

  • Geiger, G. (1975) “Short-term learning” in flies. Naturwiss. 62: 539.

    Google Scholar 

  • Geiger, G. (1981) Is there a motion-independent position computation of an object in the visual system of the housefly? Biol. Cybern. 40: 71–75.

    Google Scholar 

  • Geiger, G., Boulin, C. & Bücher, R. (1981) How the two eyes add together: Monocular properties of the visually guided orientation behaviour of flies. Biol. Cybern. 41: 71–78.

    Google Scholar 

  • Geiger, G & Nässei, D.R (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol. Cybern. 44: 141–149.

    Google Scholar 

  • Geiger, G. & Poggio, T. (1975) The orientation of flies towards visual patterns; on the search for the underlying functional interactions. Biol. Cybern. 17: 1–16.

    Google Scholar 

  • Geiger, G. & Poggio, T. (1977) On head and body movements of flying flies. Biol. Cybern. 25: 177–180

    Google Scholar 

  • Geiger, G. & Poggio, T. (1981) Asymptotic oscillations in the tracking behaviour of the fly Musca domestica. Biol. Cybern. 41: 197–201.

    Google Scholar 

  • Götz, K.G. (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2: 77–92.

    Google Scholar 

  • Götz, K.G. (1975) The optomotor equilibrium of the Drosophila navigation system J. Comp. Physiol. 99: 187–210.

    Google Scholar 

  • Götz, K.G. (1980) Visual guidance in Drosophila. In: Development and Neurobiology of Drosophila. Ed. O. Siddiqi, P. Babu, L.M. Hall & J.C. Hall. New York, Plenum Press, p. 391–407.

    Google Scholar 

  • Götz, K.G. (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: BIONA Report 2 Ed. W. Nachtigall, G. Fischer, Stuttgart, p. 21–34.

    Google Scholar 

  • Götz, K.G. & Buchner, E. (1978) Evidence for one-way movement detection in the visual system of Drosophila. Biol. Cybern. 31: 243–248.

    Google Scholar 

  • Götz, K.G., Hengstenberg, B. & Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol. Cybern. 35: 101–112.

    Google Scholar 

  • Götz, K.G. & Wenking, H. (1973) Visual control of locomotion in the walking fruitfly Drosophila. J. Comp. Physiol. 85: 235–266.

    Google Scholar 

  • Goulet, M., Campan, R. & Lambin, M. (1981) The visual perception of relative distances in the wood-cricket Nemobius sylvestris. Physiol. Entomol. 6: 357 367.

    Google Scholar 

  • Grieger, B., Bolz, J. & Varju, D. (1981) On the visually evoked head nystagmus of Tenebrio molitor and other beetles. Biol. Cybern. 41: 1–3.

    Google Scholar 

  • Hassenstein,B. (1951) Ommatidienraster und afferente Bewegungs-integration. Z. vergl. Physiol. 33: 301–326.

    Google Scholar 

  • Hassenstein, B. & Reichardt, W. (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. IIb: 513–524.

    Google Scholar 

  • Hausen, K. (1983) The lobula-complex of the fly: Structure, function and significance in visual behaviour. (This volume)

    Google Scholar 

  • Hausen, K. & Wehrhahn, C. (1983) The role of horizontal cells in the optomotor yaw torque response in flies. (In prep.)

    Google Scholar 

  • Heisenberg, M. (1979) Genetic approach to a visual system. In: Handbook of Sensory Physiology. VII/6A. Ed. H. Autrum, Berlin, Springer Verlag, p. 665–679.

    Google Scholar 

  • Heisenberg, M. (1983) Initiale Aktivität und Willkürverhalten bei Tieren. Naturwiss. 70: 70 78.

    Google Scholar 

  • Heisenberg, M. & Buchner, E. (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. 117: 127–162

    Google Scholar 

  • Heisenberg, M. & Götz, K.G. (1975) The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. Comp. Physiol. 98: 217–241.

    Google Scholar 

  • Heisenberg, M. & Wolf, R. (1979) On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. 3. Comp. Physiol. 130: 113–130.

    Google Scholar 

  • Heisenberg, M. & Wolf, R. (1984) Vision in Drosophila. Berlin, Springer. (In press).

    Google Scholar 

  • Helmholtz, H. von (1867) Handbuch der Physiologischen Optik. Leipzig: L. Voss.

    Google Scholar 

  • Hengstenberg, R. & Sandeman, D.C. (1982) Compensatory head-roll- movements of flies. Verh. Dtsch. Zool. Ges. 1982: 313. G. Fischer, Stuttgart.

    Google Scholar 

  • Hu, K.G. & Stark, W.S. (1980) The roles of Drosophila ocelli and compound eyes in phototaxis. J. Comp. Physiol. 135: 85–95.

    Google Scholar 

  • Jeanrot, N., Campan, R. & Lambin, M. (1981) Functional exploration of the visual field of the wood-cricket, Nemobius sylvestris. Physiol. Entomol. 6: 27–34

    Google Scholar 

  • Kien, J. & Land, M.F. (1978) The fast phase of optokinetik nystagmus in the locust. Physiol. Entomol. 3: 53–57.

    Google Scholar 

  • Kirschfeld, K. (1972) The visual system of Musca: Studies on optics, structure and function. In: Information Processing in the Visual System of Arthropods. Ed. R. Wehner, Berlin, Springer, p. 61–74.

    Google Scholar 

  • Kirschfeld, K. & Franceschini, N. (1968) Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5: 47–52.

    Google Scholar 

  • Kirschfeld, K. & Reichardt, W. (1970) Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z. Naturforsch. 25b: 228.

    Google Scholar 

  • Kirschfeld, K. & Wenk, P. (1976) The dorsal compound eye of simuliid flies: An eye specialized for the detection of small, rapidly moving objects Z. Naturforsch. 31c: 764–765.

    Google Scholar 

  • Kuenen, L.P.S. & Baker, T.C. (1982) Optomotor regulation of ground velocity in moths during flight to sex pheromone at different heights. Physiol. Entomol. 7: 193–202.

    Google Scholar 

  • Kunze, P. (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z. vergl. Physiol. 44: 656–684.

    Google Scholar 

  • Land, M.F. & Collett, T.S. (1974) Chasing behaviour of houseflies (Fannia canicularis): A description and analysis. J. Comp. Physiol. 89: 331–357.

    Google Scholar 

  • Laughlin, S.B. (1983) The roles of parallel channels in early visual processing by the arthropod compound eye. (This volume).

    Google Scholar 

  • Lillywhite, P.G. & Dvorak, D.R (1981) Responses to single photons in a fly optomotor neurone. Vision Res. 21: 279–290.

    Google Scholar 

  • Limb, J.O. & Murphy 3.A. (1975) Estimating the velocity of moving objects in television signals. Computer Graphics and Image Processing 4: 311–327.

    Google Scholar 

  • Longuet-Higgins, H.C. & Prazdny, K. (1980) The interpretation of a moving retinal image. Proc. R. Soc. Lond. 208B: 385–-397.

    Google Scholar 

  • Maldonado, H. & Rodriguez, E. (1972) Depth perception in the praying mantis. Physiol. Behav. 8: 751–759.

    Google Scholar 

  • Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1980) Movement detection: Performance of a wide-field element in the visual system of the blowfly. Vision Res. 20: 467–474.

    Google Scholar 

  • Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1982) Memorylike effects in fly vision. Spatio-temporal interactions in a wide- field neuron. Biol. Cybern. 43: 147–155

    Google Scholar 

  • McCann, G.D. & MacGinitie, G.F. (1965) Optomotor response studies of insect vision. Proc. R. Soc. Lond. 163B: 369–401.

    Google Scholar 

  • Menzel, R. (1979) Spectral sensitivity and color vision in invertebrates. In: Handbook of Sensory Physiology, VII/6A. Ed. H. Autrum. Berlin, Springer Verlag, p. 503–580.

    Google Scholar 

  • Mimura, K. (1982) Discrimination of some visual patterns in Drosophila melanogaster. J. Comp. Physiol. 146: 229–233.

    Google Scholar 

  • Mittelstaedt, H. (1949) Telotaxis und Optomotorik von Eristalis bei Augeninversion. Naturwiss. 36: 90–91.

    Google Scholar 

  • Mittelstaedt, H. (1857) Prey capture in mantids. In: Recent Advances in Invertebrate Physiology. Ed. B.T. Scheur. Univ. Oregon Publ. p. 51–71.

    Google Scholar 

  • Moore, D., Penikas, J. & Rankin, M.A. (1981) Regional specialization for an optomotor response in the honeybee Apis mellifera compound eye. Physiol. Entomol. 6: 61–70.

    Google Scholar 

  • Moore, D. & Rankin, M.A. (1982) Direction-sensitive partitioning of the honeybee optomotor system. Physiol. Entomol. 7: 25–36.

    Google Scholar 

  • Morton, P.D. & Cosens, D. (1978) Vision in Drosophila: evidence for the involvement of retinula cells 1–6 in the orientation behaviour of Drosophila melanogaster. Physiol. Entomol. 3: 323–334.

    Google Scholar 

  • Olberg, R.M. (1981) Object- and self-movement detectors in the ventral nerve cord of the dragonfly. J. Comp. Physiol. 141: 327–334.

    Google Scholar 

  • Palka, J. (1969) Discrimination between movements of eye and object by visual interneurones of crickets. J. Exp. Biol. 50: 723–732.

    Google Scholar 

  • Pick, B. (1974) Visual flicker induces orientation behavior in the fly Musca. Z. Naturforsch. 29c: 310–312.

    Google Scholar 

  • Pick, B. (1976) Visual pattern discrimination as an element of the fly’s orientation behaviour. Biol. Cybern. 23: 171–180.

    Google Scholar 

  • Pick, B. (1978) Visuelles Orientierungsverhalten von Fliegen: Eine nichtlineare Systemanalyse. In: Cybernetics 1977. Ed. G. Hauske & E. Butenandt. München. R. Oldenbourg Verlag, p. 301–310.

    Google Scholar 

  • Pick, B. & Buchner, E. (1979) Visual movement detection under light-and dark-adaptation in the fly, Musca domestica. J. Comp. Physiol. 134: 45–54.

    Google Scholar 

  • Pinter, R.B. (1979) Inhibition and excitation in the locust DCMD receptive field. J. Exp. Biol. 55: 191–216.

    Google Scholar 

  • Poggio, T. & Reichardt, W ( 1973 a) A theory of the pattern induced flight orientation of the fly, Musca domestica. Kybernetik 12: 185–203.

    Google Scholar 

  • Poggio, T. & Reichardt, W. (1976) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Quart. Rev Biophys. 9: 377–438.

    Google Scholar 

  • Poggio, T. & Reichardt, W. ( 1981 a) Characterization of nonlinear interactions in the fly’s visual system. In: Theoretical Approaches in Neurobiology. Ed. W. Reichardt & T. Poggio. Cambridge, Mass., The MIT Press, p. 64–84.

    Google Scholar 

  • Poggio, T. & Reichardt, W. ( 1981 b) Visual fixation and tracking in flies. Mathematical properties of simple control systems. Biol. Cybern. 40: 101–112.

    Google Scholar 

  • Poggio, T., Reichardt, W. & Hausen, K. (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwiss. 68: 443–446.

    Google Scholar 

  • Praagh, J.P. van, Ribi, W., Wehrhahn, C. & Wittmann, D. (1980) Drone bees fixate the queen with the dorsal frontal part of their compound eyes. J. Comp. Physiol. 136: 263–266.

    Google Scholar 

  • Reichardt, W. (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems. Z. Naturforsch. 12b: 448–457.

    Google Scholar 

  • Reichardt, W. (1973) Musterinduzierte Flugorientierung. Verhaltensversuche an der Fliege Musca domestica. Naturwiss. 60: 122–138.

    Google Scholar 

  • Reichardt, W. (1979) Functional characterization of neural interactions through an analysis of behavior. In: Neurosciences: Fourth Study Program. Ed. F.O. Schmitt & F.G. Worden. Cambridge, Mass. MIT Press, p. 81–103.

    Google Scholar 

  • Reichardt, W., Brakenberg, V. & Weidel, G. (1968) Auslösung von Elementarprozessen durch einzelne Lichtquanten im Fliegenauge. Kybernetik 5: 148–169.

    Google Scholar 

  • Reichardt, W. & Poggio, T. (1975) A theory of the pattern induced flight orientation of the fly Musca domestica II. Biol. Cybern. 18: 69–80.

    Google Scholar 

  • Reichardt, W. & Poggio, T. (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart. Rev. Biophys. 9: 311–375.

    Google Scholar 

  • Reichardt, W. & Poggio, T. (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol. Cybern. 35: 81–100.

    Google Scholar 

  • Reichardt, W. & Poggio T. (1981) Visual control of flight in flies. In: Theoretical Approaches in Neurobiology. Ed. W. Reichardt & T. Poggio. Cambridge, Mass., The MIT Press, p. 135–150.

    Google Scholar 

  • Reichardt, W., Poggio T. & Hausen, K. (1982) Figure-ground discrimina¬tion by relative movement in the visual system of the fly. Part II: Towards the neuronal circuitry. Biol. Cybern, supp. 46: 1–30.

    Google Scholar 

  • Reichardt, W. & Varju, D. (1959) Ubertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z. Naturforsch. 14b: 674–689

    Google Scholar 

  • Reichardt, W. & Wenking, H. (1969) Optical detection and fixation of objects by fixed flying flies. Naturwiss. 56: 424–425.

    Google Scholar 

  • Riehle, A. & Franceschini, N. (1982) Response of a direction-selective, movement detecting neuron under precise stimulation of two identified photoreceptor cells. Neursci. Lett. Supp. 10: 411.

    Google Scholar 

  • Rogers, B. & Graham, M. (1979) Motion parallax as an independent cue for depth perception. Perception 8: 125–134.

    Google Scholar 

  • Rossel, S. (1980) Foveal fixation and tracking in the praying mantis. J. Comp. Physiol. 139: 307–331.

    Google Scholar 

  • Rossel, S. (1983) Binocular steropsis in an insect. Nature (Lond.). (In Press).

    Google Scholar 

  • Rowell, C.H.F., O’Shea, M. & Williams, J.L.D. (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. J. Exp. Biol. 68: 157–185.

    Google Scholar 

  • Sanyo(1982) Time Magazine 120 (2): 48.

    Google Scholar 

  • Snyder, A.W. (1979) The physics of vision in compound eyes. In: Handbook of Sensory Physiology, VII/6A. Ed. Berlin, Springer, p. 225–313.

    Google Scholar 

  • Srinivasan, M.V. & Bernard, G.D. (1976) A proposed mechanism for multiplication of neural signals. Biol. Cybern. 21: 227–236.

    Google Scholar 

  • Srinivasan, M.V. & Bernard, G.D. (1977) The pursuit response of the housefly and its interaction with the optomotor response. J. Comp. Physiol. 115: 101–117.

    Google Scholar 

  • Srinivasan, M.V. & Dvorak, D.R. (1979) The waterfall illusion in an insect visual system. Vision Res. 19: 1435–1437.

    Google Scholar 

  • Srinivasan, M.V. & Dvorak, D.R. (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. 140: 1–23.

    Google Scholar 

  • Stange, G. (1981) The ocellar component of flight equilibrium control in dragonflies. J. Comp. Physiol. 141: 335–347.

    Google Scholar 

  • Stavenga, D.G. & Schwemer, J. (1983) Visual pigments of invertebrates. (This volume).

    Google Scholar 

  • Stegmann, P. (1982) Ein Modell zur Simulation des Verhaltens von richtungsselektiven Simple-Zellen im visuellen Cortex der Katze. Diplomarbeit, Universität Stuttgart. 85 pages.

    Google Scholar 

  • Strausfeld, N. (1983) Functional neuroanatomy of the blowfly’s visual system. (This volume).

    Google Scholar 

  • Strebel-Brede, J. (1982) Eigenschaften der visuell induzierten Dreh-momenten-Reaktion von fixiert fliegenden Stubenfliegen Musca domestica L. und Fannia canicularis L. Dissertation, Universität Tübingen.

    Google Scholar 

  • Taddei-Ferretti, C. (1973) Landing reaction of Musca domestica. IV. A. Monocular and binocular vision; B. Relationship between landing and optomotor reactions. Z. Naturforsch. 28c: 579–592.

    Google Scholar 

  • Taddei-Ferretti, C. & Perez de Talens, A.F.P. (1973) Landing of Musca domestica. III. Dependence on the luminous characteristics of the stimulus. Z. Naturforsch. 28c: 568–578.

    Google Scholar 

  • Taylor, C.P. (1981) Contribution of compound eyes and ocelli to steering of locust in flight: 1. Behavioral analysis. J. Exp. Biol. 93: 1–18.

    Google Scholar 

  • Thorson, J. ( 1966 a) Small signal analysis of a visual reflex in the locust: I. Input parameters. Kybernetik 3: 41–53.

    Google Scholar 

  • Torre, V. & Poggio, T. (1978) A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. 202B: 409–416.

    Google Scholar 

  • Ullman, S. (1981) Analysis of visual motion by biological and computer systems. Computer 14: 57–69.

    Google Scholar 

  • Varju, D. & Bolz, J. (1980) Head movements of the mealworm beetle Tenebrio molitor. I. Their properties in stationary environments and their role during object fixation. Biol. Cybern. 36: 109–115.

    Google Scholar 

  • Varju, D. & Reichardt, W. (1967) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II. Z. Naturforsch. 22b: 1343–1351.

    Google Scholar 

  • Virsik, R. & Reichardt, W. (1974) Tracking of moving objects by the fly Musca domestica. Naturwiss. 61: 132–133.

    Google Scholar 

  • Virsik, R. & Reichardt, W. (1976) Detection and tracking of moving objects by the fly Musca domestica. Biol. Cybern. 23: 83–98.

    Google Scholar 

  • Wagner, H. (1982) Flow-field variables trigger landing in flies. Nature (Lond.) 297: 147–148

    Google Scholar 

  • Waterman, T.H. (1981) Polarization sensitivity. In: Handbook of Sensory Physiology, VII/6B. Ed. H. Autrum. Berlin, Springer Verlag, p. 281–469.

    Google Scholar 

  • Waterman, T. (1983) Natural polarized light and vision. (This volume).

    Google Scholar 

  • Wehner, R. (1981) Spatial vision in arthropods. In: Handbook of Sensory Physiology, Vol. VII/6C. Ed. H. Autrum. Berlin, Springer Verlag, p. 287–616.

    Google Scholar 

  • Wehrhahn, C. (1976) Evidence for the role of retinal receptors R7/8 in the orientation behaviour of the fly. Biol. Cybern. 21: 213–220.

    Google Scholar 

  • Wehrhahn, C. ( 1978 a) Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybern. 29: 237–247.

    Google Scholar 

  • Wehrhahn, C. ( 1978 b) The angular orientation of the movement detectors acting on the flight lift response in flies. Biol. Cybern. 31: 169–173.

    Google Scholar 

  • Wehrhahn, C. (1979) Sex specific differences in the orientation behaviour of houseflies. Biol. Cybern. 32: 239–241.

    Google Scholar 

  • Wehrhahn, C. (1980) Visual fixation and tracking in flies. In: Mathematical Models in Molecular and Cellular Biology. Ed. L. Segel. Cambridge, Cambridge University Press, p. 568–603.

    Google Scholar 

  • Wehrhahn, C. (1981) Fast and slow flight torque responses in flies and their possible role in visual orientation behaviour. Biol. Cybern. 40: 213–221.

    Google Scholar 

  • Wehrhahn, C. & Hausen, K. (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol. Cybern. 38: 179–186.

    Google Scholar 

  • Wehrhahn, C., Hausen, K. & Zanker, J. (1981) Is the landing response of the housefly (Musca) driven by motion of a flow field? Biol. Cybern. 41: 91–99.

    Google Scholar 

  • Wehrhahn, C., Poggio, T. & Bülthoff, H. (1982) Tracking and chasing in houseflies (Musca). Biol. Cybern. 45: 123–130.

    Google Scholar 

  • Willmund, R. & Ewing, A. (1982) Visual signals in the courtship of Drosophila melanogaster. Anim. Behav. 30: 209–215.

    Google Scholar 

  • Wolf, R. & Heisenberg, M. (1980) On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. II. A temporally and spatially variable weighting function for the visual field (“visual attention”). J. Comp. Physiol. 140: 69–80.

    Google Scholar 

  • Zaretsky, M & Rowell, C.H.F. (1979) Saccadic suppression by corollary discharge in the locust. Nature (Lond.) 280: 583–585.

    Google Scholar 

  • Zeil, J. (1981) Sexual dimorphism in the visual system of flies. Doctoral Thesis. University of Tübingen, Germany. 80 pages.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag US

About this chapter

Cite this chapter

Buchner, E. (1984). Behavioural Analysis of Spatial Vision in Insects. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics