Skip to main content

Magnetic Sensitivity and its Possible Physical Basis in the Yellowfin Tuna, Thunnus Albacares

  • Chapter
Mechanisms of Migration in Fishes

Part of the book series: NATO Conference Series ((MARS,volume 14))

Abstract

Many animals are known to orient to magnetic fields. However, two central problems in the study of magnetic sensitivity have been the almost complete failure of magnetic field conditioning experiments and the lack of evidence for a feasible transduction mechanism. In the studies reported here yellowfin tuna learned to discriminate between two Earth-strength magnetic fields in a discrete-trials/fixed-interval conditioning procedure. Magnetometry experiments, diffraction spectra and electron microscope analyses demonstrated single-domain crystals of the ferromagnetic mineral magnetite in the head of this species. The crystals are concentrated in tissue contained within a sinus formed by the ethmoid bones of the skull. Theoretical analyses show that the crystals would be suitable for use in magnetoreception if linked to the nervous system. The physical properties of the crystals would determine the operation of magnetoreceptor organelles and constrain the capacities of the magnetic sense. Tests of these constraints in appropriately designed conditioning experiments will provide powerful tests of the ferromagnetic magnetoreception hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaugrand, J.P . 1976. An attempt to confirm magnetic sensitivity in the pigeon, Columba livia. Journal of Comparative Physiology A Sensory, Neural and Behavioral Physiology 110A:343–355.

    Google Scholar 

  • Bitterman, M.E. 1966. Animal learning. Pages 451–484 in J.B. Sidowski, editor. Experimental methods and instrumentation in psychology. McGraw-Hill, New York, New York, USA.

    Google Scholar 

  • Bookman, M.A. 1977. Sensitivity of the homing pigeon to an Earth- strength magnetic field. Nature (London) 267: 340–342.

    Article  CAS  Google Scholar 

  • Bookman, M.A. 1978. Sensitivity of the homing pigeon to an Earth-strength magnetic field. Pages 127 - 134 in K. Schmidt-Koenig and W.T. Keeton, editors. Animal migration, navigation, and homing. Springer-Verlag, Heidelberg, Federal Republic of Germany.

    Google Scholar 

  • Carey, F.G., and B.H. Robison. 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. U.S. National Marine Fisheries Serice Fishery Bulletin 79: 277–292.

    Google Scholar 

  • Engen, T. 1971. Psychophysics. I. Discrimination and detection. Pages 11–46 in J.W. Kling and L.A. Riggs, editors. Woodworth (and) Schlosberg’s experimental psychology. Holt, Rinehart and Winston, New York, New York, USA.

    Google Scholar 

  • Gould, J.L. 1980. The case for magnetic sensitivity in birds and bees (such as it is). American Scientist 68: 256–267.

    Google Scholar 

  • Gould, J.L. 1982. The map sense of pigeons. Nature (London) 296: 205–211.

    Article  Google Scholar 

  • Gould, J.L., J.L. Kirschvink, and K.S. Deffeyes. 1978. Bees have magnetic remanence. Science (Washington DC) 201: 1026–1028.

    Article  CAS  Google Scholar 

  • Hasler, A.D., R.M. Horrall, W.J. Wisby, and W. Braemer. 1958. Sun-orientation and homing in fishes. Limnology and Oceanography 3: 353–361.

    Article  Google Scholar 

  • Hasler, A.D., A.T. Scholz, and R.M. Horrall. 1978. Olfactory imprinting and homing in salmon. American Scientist 66: 347–355.

    PubMed  CAS  Google Scholar 

  • Iversen, R.T.B . 1967. Response of yellowfin tuna (Thunnus albacares) to underwater sound. Marine Bio-Acoustics 2: 105–121. Pergamon Press, Oxford, England.

    Google Scholar 

  • Jemison, H.A. III, A.E. Dizon, and M.M. Walker. 1982. An automatic feeder for liquids and wet or dry solids. Behavior Research Methods & Instrumentation 14: 54–55.

    Article  Google Scholar 

  • Jones, D.S., and B.J. MacFadden. 1982. Induced magnetization in the monarch butterfly, Danaus plexippus (Insecta, Lepidoptera). Journal of Experimental Biology 96: 1–9.

    Google Scholar 

  • Jungerman, R.L., and B. Rosenblum. 1980. Magnetic induction for the sensing of magnetic fields by animals—An analysis. Journal of Theoretical Biology 87: 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn, A.J. 1974. The detection of electric fields from inanimate and animate sources other than electric organs. Pages 147–200 in A. Fessard, editor. Handbook of sensory physiology. Springer-Verlag, New York, New York, USA.

    Google Scholar 

  • Kalmijn, A.J. 1978. Experimental evidence of geomagnetic orientation in elasmobranch fishes. Pages 347–353 in K. Schmidt-Koenig and W.T. Keeton, editors. Animal migration, navigation, and homing. Springer-Verlag, Heidelberg, Federal Republic of Germany.

    Google Scholar 

  • Kalmijn, A.J. 1981. Biophysics of geomagnetic field detection. IEEE Transactions of Magnetics 17: 1113–1124.

    Article  Google Scholar 

  • Keeton, W.T. 1971. Magnets interfere with pigeon homing. Proceedings of the National Academy of Sciences 68: 102–106.

    Article  CAS  Google Scholar 

  • Keeton, W.T. 1972. Effects of magnets on pigeon homing. Pages 579–594 in S.R. Galler, K. Schmidt-Koenig, G.J. Jacobs, and R.E. Belleville, editors. Animal orientation and navigation. National Aeronautics and Space Administration, Special Publication 262, Washington, District of Columbia, USA.

    Google Scholar 

  • Kirschvink, J.L. 1981. The horizontal magnetic dance of the honeybee is compatible with a single-domain ferromagnetic magnetoreceptor. BioSystems 14: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink, J.L. 1983. Biogenic ferrimagnetism: A new biomagnetism. Pages 501–532 in S.J. Williamson, G.-L. Romani, L. Kaufman, and I. Modena, editors. Biomagnetism: An interdisciplinary approach. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Kirschvink, J.L., and J.L. Gould. 1981. Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13: 181–201.

    Article  PubMed  CAS  Google Scholar 

  • Kling, J.W. 1971. Learning. Introductory survey. Pages 551–563 in J.W. Kling and L.A. Riggs, editors. Woodworth & Schlosberg’s Experimental psychology. Holt, Rinehart and Winston, New York, New York, USA.

    Google Scholar 

  • Kreithen, M.L. 1978. Sensory mechanisms for animal orientation—can any new ones be discovered? Pages 25–34 in K. Schmidt-Koenig and W.T. Keeton, editors. Animal migration, navigation, and homing. Springer-Verlag, Heidelberg, Federal Republic of Germany.

    Google Scholar 

  • Kreithen, M.L., and W.T. Keeton. 1974. Attempts to condition homing pigeons to magnetic stimuli. Journal of Comparative Physiology 91: 355–362.

    Article  Google Scholar 

  • Leask, M.J.M. 1977. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature (London) 267: 144–145.

    Article  CAS  Google Scholar 

  • Lindauer, M., and H. Martin. 1972. Magnetic effect on dancing bees. Pages 559–567 in S.R. Galler, K. Schmidt-Koenig, G.J. Jacobs, and R.E. Belleville, editors. Animal orientation and navigation. National Aeronautics and Space Administration, Special Publication 262, Washington, District of Columbia, USA.

    Google Scholar 

  • Mather, J.G., and R.R. Baker. 1981. Magnetic sense of direction in woodmice for route-based navigation. Nature (London) 291: 152–155.

    Article  Google Scholar 

  • McElhinny, M.W. 1973. Palaeomagnetism and plate tectonics. Cambridge University Press, London, England.

    Google Scholar 

  • Martin, H., and M. Lindauer. 1977. The effect of the Earths magnetic field on gravity orientation in the honey bee (Apis mellifica). Journal of Comparative Physiology A. Sensory, Neural and Behavioral Physiology 12A: 145–187.

    Google Scholar 

  • Moore, B.R. 1980. Is the homing pigeon’s map geomagnetic? Nature (London) 285: 69–70.

    Article  Google Scholar 

  • Nakamura, E.L. 1968. Visual acuity of two tunas, Katouwonus pelamis and Euthynnus affinis. Copeia 1968: 41–49.

    Article  Google Scholar 

  • Phillips, J.B., and K. Adler. 1978. Directional and discriminatory responses of salamanders to weak magnetic fields. Pages 325–333 in K. Schmidt-Koenig and W.T. Keeton, editors. Animal migration, navigation, and homing. Springer-Verlag, Heidelberg, Federal Republic of Germany.

    Google Scholar 

  • Presti, D., and J.D. Pettigrew. 1980. Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature (London) 285: 99–101.

    Article  CAS  Google Scholar 

  • Quinn, T.P . 1980. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. Journal of Comparative Physiology A. Sensory, Neural and Behavioral Physiology 137A: 243–248.

    Google Scholar 

  • Quinn, T.P., and E.L. Brannon. 1982. The use of celestial and magnetic cues by orienting sockeye salmon smolts. Journal of Comparative Physiology A. Sensory, Neural, and Behavioral Physiology 147A: 547–552.

    Google Scholar 

  • Quinn, T.P., R.T. Merrill, and E.L. Brannon. 1981. Magnetic field detection in sockeye salmon. Journal of Experimental Zoology 217: 137 - 142.

    Article  Google Scholar 

  • Reille, A. 1968. Essai de mise en évidence d’une sensibilitié du pigeon au champ magnétique à l’aide d’un conditionnement nociceptif. Journal of Physiologie (Paris) 60: 85–92.

    CAS  Google Scholar 

  • Rommel, S.A. Jr., and J.D. McCleave. 1973. Sensitivity of American eels (Anguilla rostrata) and Atlantic salmon (Salmo salar) to weak electric and magnetic fields. Journal of the Fisheries Research Board of Canada 30: 657–663.

    Article  Google Scholar 

  • Sharp, G.D., and R.C. Dotson. 1977. Energy for migration in albacore, Thunnus alalunga. US National Marine Fisheries Service Fishery Bulletin 75: 447–450.

    Google Scholar 

  • Tesch, F.-W. 1980. Migratory performance and environmental evidence of orientation. Pages 589–612 in M.A. Ali, editor. Environmental physiology of fishes. Plenum Press, New York, New York, USA.

    Google Scholar 

  • Walcott, C. 1980. Magnetic orientation in homing pigeons. IEEE Transactions on Magnetics 16: 1008–1013.

    Article  Google Scholar 

  • Walcott, C., J.L. Gould, and J.L. Kirschvink. 1979. Pigeons have magnets. Science (Washington DC) 205: 1027–1029.

    Article  CAS  Google Scholar 

  • Walcott, C., and R.P. Green. 1974. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science (Washington, DC) 184: 180–182.

    Article  CAS  Google Scholar 

  • Walker, M.M., A.E. Dizon, and J.L. Kirschvink. 1982. Geomagnetic field detection by yellowfin tuna. Pages 755–758 in Oceans 82 Conference Record: Industry, Government, Eduction — Partners in Progress. Institute of Electrical and Electronics Engineers, New York, New York, USA.

    Google Scholar 

  • Wiltschko, W. 1972. The influence of magnetic total intensity and inclination on directions preferred by migrating European robins (Erithacus rubecula). Pages 569–577 in S.R. Galler, K. Schmidt-Koenig, G.J. Jacobs, and R.E. Belleville, editors. Animal orientation and navigation. National Aeronautics and Space Administration Special Publication 262. Washington, District of Columbia, USA.

    Google Scholar 

  • Wiltschko, R., D. Nohr, and W. Wiltschko. 1981. Pigeons with a deficient sun compass use the magnetic compass. Science (Washington, DC) 214: 343–345.

    Article  CAS  Google Scholar 

  • Woodard, W.T., and M.E. Bitterman. 1974. A discrete-trials/fixed-interval method of discrimination training. Behavior Research Methods (and) Instrumentation 6: 389–392.

    Article  Google Scholar 

  • Yorke, E.D. 1979. A possible magnetic transducer in birds. Journal of Theoretical Biology 77: 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Yorke, E.D. 1981. Sensitivity of pigeons to small magnetic field variations. Journal of Theoretical Biology 89: 533–537.

    Article  PubMed  CAS  Google Scholar 

  • Yuen, H.S.H. 1970. Behavior of skipjack tuna, Katsuwonus pelamis, as determined by tracking with ultrasonic devices. Journal of the Fisheries Research Board of Canada 27:2071–2079.

    Article  Google Scholar 

  • Zoeger, J., J.R. Dunn, and M. Fuller. 1981. Magnetic material in the head of the common Pacific dolphin. Science (Washington DC) 213:892–894.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Walker, M.M. (1984). Magnetic Sensitivity and its Possible Physical Basis in the Yellowfin Tuna, Thunnus Albacares . In: McCleave, J.D., Arnold, G.P., Dodson, J.J., Neill, W.H. (eds) Mechanisms of Migration in Fishes. NATO Conference Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2763-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2763-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9708-6

  • Online ISBN: 978-1-4613-2763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics