Skip to main content

Noise Considerations in Submicron Devices

  • Chapter
The Physics of Submicron Structures

Abstract

There currently is little understanding of noise processes in very-small semiconductor devices. We consider here factors that arise in these structures due to temporal and spatial correlation of fluctuations. In this approach, time correlation functions determine macroscopic transport properties, and when energy-momentum conserving models are used as a basis for noise modeling several two-point spatial correlation functions, which describe the correlations between energy and momentum at two points in the device, are important. Ensemble Monte Carlo techniques are used to study Gauss’s law and Poisson’s equation are solved concurrently to provide an accurate relation between the position dependent carrier and field profiles. As the ensemble Monte Carlo method provides a representation of the carrier distribution function, the spatial correlations can be estimated in a straightforward fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Zimmermann, Y. Leroy, A. Kaszynski and B. Carnez, in “Proc. 5th Int. Conf. Noise in Physical Systems”, D. Wolf, Ed., ( Springer, New York, 1978 ) 101.

    Google Scholar 

  2. J. Zimmermann and E. Constant, Sol. State Electron. 23, 915 (1980).

    Article  ADS  Google Scholar 

  3. B. Carnez, A. Cappy, R. Fauquembergue, E. Constant, and G. Salmer, IEEE Trans. Electron. Dev. ED-28, 784 (1981).

    Article  Google Scholar 

  4. P. A. Lebwohl and P. J. Price, Appi. Phys. Letters 19, 530 (1971).

    Article  ADS  Google Scholar 

  5. D. K. Ferry and J. R. Barker, J. Appi. Phys. 52, 818 (1981).

    Article  ADS  Google Scholar 

  6. P. Lugli, J. Zimmermann, and D. K. Ferry, J. Physique 42 (Suppl. 10), C7–103 (1981).

    Google Scholar 

  7. P. J. Price, in “Fluctuation Phenomena in Solids”, R. E. Burgess, Ed., (Academic Press, New York, 1965) 355. See also a recent article (unpublished) by Price in response functions.

    Google Scholar 

  8. V. L. Gurevich, Sov. Phys. — JETP 16, 1252 (1963).

    ADS  Google Scholar 

  9. V. P. Kalashnikov, Physica 48, 93 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  10. D. K. Ferry, J. Physique 42(Suppl. 10 ), C7 - 253 (1981).

    Google Scholar 

  11. P. Lugli and D. K. Ferry, in “Proc. Intern. Conf. on Physics of Semiconductors, Montpellier”, M. Averous, Ed., ( North-Holland, Amsterdam, (1983) 251.

    Google Scholar 

  12. J. Zimmermann, P. Lugli, and D.K. Ferry, J. Physique 42(Suppl. 10 ), C7–95 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lugli, P., Grondin, R.O., Ferry, D.K. (1984). Noise Considerations in Submicron Devices. In: Grubin, H.L., Hess, K., Iafrate, G.J., Ferry, D.K. (eds) The Physics of Submicron Structures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2777-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2777-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9714-7

  • Online ISBN: 978-1-4613-2777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics