Skip to main content

Part of the book series: NATO Advanced Science Institutes Series ((ASIB,volume 90))

Abstract

The statement has been made [1] that the most impressive progress in the past twenty years in research in magnetic fusion has been in the area of diagnostics. Compared to the situation in fusion work in the 1950’s and early 1960’s, measured plasma parameters for present fusion experiments can be quoted with confidence. Often each parameter, such as temperature or density, is measured by a variety of techniques. Spatially and temporally resolved measurements are quite common (Fig. 1). While the progress in our theoretical understanding of fusion experiments has been impressive, the major thrust of fusion research continues to be the construction of larger experiments, and the measurement of the properties of the plasmas produced in the experiments. Diagnostics play a crucial role in this effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harold Grad, private communication.

    Google Scholar 

  2. N. Bretz et al., Appl. Opt. 17, 192 (1978).

    Article  ADS  Google Scholar 

  3. H. P. Furth, “The Tokamak,” in Fusion, Vol. 1, E. Teller, Ed., Academic Press (1981).

    Google Scholar 

  4. J.M. Rawls et al., Status of Tokamak Research, DOE/ER-0034, U.S. Department of Energy (1979).

    Google Scholar 

  5. F. H. Coensgen et al., Phys. Rev. Lett. 1132 (1980).

    Google Scholar 

  6. C. DeMichelis, Ed., Nuclear Fusion 18, 647 (1978).

    Google Scholar 

  7. A. Kislyakov and L. Krupnik, Sov. J. Plasma Phys. 7, 478 (1981).

    Google Scholar 

  8. R. J. Goldston, “Diagnostic Techniques for Magnetically Confined High Temperature Plasmas II,” (to be published in the Handbook of Plasma Physics; Rosenbluth, Sudan, Sagdeev, Galeev, Ed., North Holland (1982).

    Google Scholar 

  9. D. E. Post, XII International Conference on the Physics of Electronic and Atomic Collisions, Sheldon Datz, Ed., North Holland, New York (1981).

    Google Scholar 

  10. R. Freeman and E. Jones, CLM-R-137, Culham Laboratory, Oxfordshire, (1974).

    Google Scholar 

  11. D. F. Duchs, D. E. Post, P. H. Rutherford, Nuclear Fusion 17, 565 (1977).

    Article  ADS  Google Scholar 

  12. D. Mueller, S. L. Davis, C. Keane (to be published).

    Google Scholar 

  13. V. V. Afrosimov, E. L. Berezovskii, I. P. Gladkovskii, A. I. Kislyakov, M. P. Petrov, V. A. Sadovnikov, Sov. Tech. Phys. 20, 33 (1975).

    Google Scholar 

  14. R. Kaita and S. S. Medley, “A Study of the Mass and Energy Resolution of the E.j B Charge Exchange Analyzer for TFTR,” Princeton University, Plasma Physics Laboratory, PPPL-1582 (1979).

    Google Scholar 

  15. D. Brisson, F. N. Baily, B. H. Quon, J. A. Ray, C. F. Barnett, Rev. Sci. Instr. L 51 511 (1980).

    Article  ADS  Google Scholar 

  16. D. Voss and S. Cohen, J. of Nuc. Mat 93 and JM, 405 (1980).

    Article  ADS  Google Scholar 

  17. J. Hosea et al., “Fast Wave Ion Cyclotron Heating in the Princeton Large Torus,” IAEA-CN-38-D-5-1, Plasma Physics and Controlled Nuclear Fusion Research, Vol. II, IAEA, Vienna, (1980), p. 95.

    Google Scholar 

  18. Yu. S. Gordeev, A. N. Zinov’ev, M. P. Petrov, JETP Letters 25, 204 (1977).

    ADS  Google Scholar 

  19. R. J. Goldston, Phys. Fluids 21, 2346 (1978).

    Article  ADS  Google Scholar 

  20. R. J. Goldston, E. Mazzucato, R. E. Slusher, and C. M. Surko, Proceedings of the Sixth Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtedyaden (1976), p. 371.

    Google Scholar 

  21. R. E. Olson, Phys. Rev. A. 2A, 1726 (1981), see also T. A. Green, E. J. Shipsey, and J. C. Browne, Phys. Rev. A 23, 546 (1981); A. Salop, J. Phys. B. 12, 919 (1979); R. K. Janev and I. S. Belie, “Final State Distribution in the Low-Energy Electron Capture Reactions of Hydrogen Atoms with Fully-Stripped Ions,” (submitted to Phys. Rev. A); H. Ryufuku, JAERI-M-82-081, April 1982.

    Article  ADS  Google Scholar 

  22. R. C. Isler, Phys. Rev. Lett. 38, 1359 (1977); R. C. Isler, L. E. Murray, S. Ksai, J. L. Dunlap, S. C. Batso, P. H. Edmonds, E.A, Lazarus, C. H. Ma, and M. Murakami, Phys. Rev. A 24, 2701 (1981).

    Article  ADS  Google Scholar 

  23. V. V. Afrosimov, Yu. S. Gordeev, A. N. Zimov’ev, and A. A. Korotov, Sov. J. Plasma Phys. 5, 551 (1979).

    Google Scholar 

  24. A. N. Zimov’ev, A. A. Korotko, E. R. Krzhizhanovskii, V. V. Afrosimov and Yu. S. Gordeev, JETP Lett. 32, 539 (1980).

    ADS  Google Scholar 

  25. R. Fonck, M. Finkenthal, R. Goldston, D. Herdon, R. Hulse, R. Kaita, and D. Meyerhofer, “Spatially Resolved Measurements of Fully-Ionized Low-Z Impurities in the PDX Tokamak,” (submitted for publication), PPPL-1906 (1982), Princeton University Plasma Physics Laboratory.

    Google Scholar 

  26. S. S. Medley, R. J. Goldston, and H. H. Towner, “Performance Study of the TFTR Diagnostic Neutral Beam for Active Charge Exchange Measurements,” Princeton University, Plasma Physics Laboratory Report, PPPL-1673 (1980).

    Google Scholar 

  27. R. L. Hickok, “Heavy Ion Beam Probing,” Rensselear Polytechnic Institute, Troy, New York (1980), RPDL Report 80–14.

    Google Scholar 

  28. J. C. Hosea, F. C. Jobes, R. L. Hickok, A. N. Dellis, Phys.Rev. Lett. 30, 839 (1973).

    Article  ADS  Google Scholar 

  29. F. Fujita and K. McCormick, Proceedings of the Sixth European Conference on Controlled Fusion and Plasma Physics, Moscow 191 (1973)

    Google Scholar 

  30. K. McCormick, M. Kick, and J. Olivarin, Proceedings of the Eighth European Conference on Controlled Fusion and Plasma Physics, Prague 10 140 (1977).

    Google Scholar 

  31. K. Burrell, private communication.

    Google Scholar 

  32. D. Post, D. Mikkelsen, R. Hulse, L. Stewart, and J. Weisheit, Journal of Fusion Energy V, 129 (1981).

    Article  Google Scholar 

  33. L. Grisham, D. Post, and D. Mikkelsen, “A Multi-MeV Li° Beam as a Diagnostic For Fast Confined Alpha Particles,” PPPL-1886 (to appear in Nuclear Technology/Fusion, October 1982).

    Google Scholar 

  34. R. McCullough, T. Goffe, M. Shah, M. Lennon, and H. Gilbody, J. Phys. B 15, 111 (1982).

    Article  ADS  Google Scholar 

  35. G. Murray, J. Stone, M. Mazo, and F. Morgan, “Single and Double Electron Transfer in He2+ + Li° Collisions,” (to appear in Phys. Rev. A ).

    Google Scholar 

  36. R. Olson, J. Phys. B 15, L163 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Post, D.E. (1983). Particle Diagnostics for Magnetic Fusion Experiments. In: Joachain, C.J., Post, D.E. (eds) Atomic and Molecular Physics of Controlled Thermonuclear Fusion. NATO Advanced Science Institutes Series, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3763-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3763-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3765-2

  • Online ISBN: 978-1-4613-3763-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics