Skip to main content

Stabilization of the Korteweg-de Vries Equation on a Periodic Domain

  • Conference paper
Control and Optimal Design of Distributed Parameter Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 70))

Abstract

We study solutions of the Korteweg-de Vries (KdV) equations

$$ {u_t} + u{u_x} + {u_{xxx}} = f $$

and

$$ {u_t} + u{u_x} + {u_{xxx}} = 0 $$

for t ≥ 0 and 0 ≤ x ≤ 1 where the subscripts denote partial derivatives. hi the first case, periodic boundary conditions are imposed at 0 and 1, and the distributed control f is assumed to be generated by a linear feedback control law conserving the “volume” or “mass” ∫ 10 u(x, t)dx which monotonically reduces the “energy” ∫ 10 u(x, t)2 dx. For the second equation a feedback boundary control is applied having the same properties. In both cases we obtain uniform exponential decay of the solutions to a constant state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Roy. Soc. London, Ser. A, 278(1978), pp. 555–601.

    Article  MathSciNet  Google Scholar 

  2. A. Cohen, Solutions of the Korteweg-de Vries equation from irregular data, Duke Math. J., 45(1978), pp. 149–81.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Constantin and J.C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc., 1(1988), pp. 413–446.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Craig, T. Kappeler and W.A. Strauss, Gain of regularity for equations of KdV type, Analyse Non Linéaire, Ann. Inst. Henri Poincaré, 9(1992), pp. 147–186.

    MathSciNet  MATH  Google Scholar 

  5. L.F. Ho and D.L. Russell, Admissible input elements for systems in Hilbertspace and a Carlson measure criterion, SIMA J. Contrl. & Opt., 21(1981), pp. 614–640.

    Article  MathSciNet  Google Scholar 

  6. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8(1983), pp. 93–128.

    Google Scholar 

  7. C.E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana University Math. J., 40(1991), pp. 37–69.

    Article  MathSciNet  Google Scholar 

  8. C.E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries, J. Amer. Math. Soc., 4(1991), pp. 323–347.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.E. Kenig, G. Ponce and L. Vega, Well-posedness andscattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46(1993), pp. 527–620.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Komornik, D.L. Russell and B.-Y. Zhang, Stabilisation de l’equation de Korteweg-de Vries, C. R. Acad. Sci. Paris, t. 312 (1991), pp. 841–843.

    MathSciNet  MATH  Google Scholar 

  11. V. Komornik, D.L. Russell and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, (to appear in) Journal of Differential Equations.

    Google Scholar 

  12. D.J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 5, 39 (1895), pp. 422–423.

    Google Scholar 

  13. J.P. Lasalle and S. Lefschetz, Stability by Liapunov’s direct method with applications, Academic Press, New York, 1961.

    Google Scholar 

  14. P.D. Iax, Integrals of nonlinear equations of evolution and solitary waves, Comm Pure and Appl. Math., 21(1968), pp. 467–490.

    Article  MathSciNet  Google Scholar 

  15. R.M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Review, 18(1976), pp. 412–459.

    Article  MathSciNet  MATH  Google Scholar 

  16. R.M. Miura, S.C. Gardner and M.D. Kruskal, Korteweg-de Vries equation and generalizations, II. Existence of conservation laws and constant of motion, J. Math. Phys., 9(1968), pp. 1204–1209.

    Article  MathSciNet  MATH  Google Scholar 

  17. D.L. Russell, Mathematics of Finite Dimensional Control Systems; Theory and Design, Marcel Dekker, Inc., New York, 1979.

    MATH  Google Scholar 

  18. D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Contrl. & Opt., 31(1993), pp. 659–676.

    Article  MathSciNet  MATH  Google Scholar 

  19. D.L. Russell and B.-Y. Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equations on a periodic domain with point dissipation, IMA Preprint Series # 1083, December, 1992 (to appear in) J. Math. Anal Appl.

    Google Scholar 

  20. J.C. Saut and R. Temam, Remarks on the Korteweg-de Vries equation, Israel J. Math., 24 (1976), pp. 78–87.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.C. Scott, F.Y. Chu and D.W. Mclaughlin, The soliton: a new concept in applied sciences, Proc. IEEE, 61 (1973), pp. 1443–1483.

    Article  MathSciNet  Google Scholar 

  22. M. Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Contrl. Si Opt., 12 (1974), pp. 500–508.

    Article  MathSciNet  Google Scholar 

  23. B.-Y. Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values, IMA preprint, series # 1015, August 1992 (to appear in) J. Funct. Anal.

    Google Scholar 

  24. B.-Y. Zhang, Unique continuation for the Korteweg-de Vries equation, SIAM J. Math. Anal. 23(1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Russell, D.L., Zhang, BY. (1995). Stabilization of the Korteweg-de Vries Equation on a Periodic Domain. In: Lagnese, J.E., Russell, D.L., White, L.W. (eds) Control and Optimal Design of Distributed Parameter Systems. The IMA Volumes in Mathematics and its Applications, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8460-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8460-1_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8462-5

  • Online ISBN: 978-1-4613-8460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics