Skip to main content

Admissibility of Solutions to the Riemann Problem for Systems of Mixed Type

-transonic small disturbance theory-

  • Conference paper
Nonlinear Evolution Equations That Change Type

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 27))

Abstract

The transonic small disturbance equation is put into the context of first order systems of conservation laws. The admissibility of shock solutions is studied via Lax inequalities, entropy inequalities, the viscosity method, Oleǐnik’s E-condition, Liu’s extended entropy condition and a class of generalized entropy inequalities. This includes the case of mixed-type shocks (elliptic-hyperbolic). The admissibility condition of transonic small disturbance theory is shown to arise from an additional conservation law different from the one used in the case of the classical p-system in isentropic gas dynamics.

ArticleNote

This research was supported by a grant of the Stiftung Volkswagenwerk, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Becker, Stoßwelle und Detonation, Z. f. Phys., 8 (1922), pp. 321–362.

    Article  Google Scholar 

  2. M. O. Bristeau, R. Glowinski, J. Periaux, P. Perrier and O. Pironneau, On the Numerical Solution of Nonlinear Problems in Fluid Dynamics by Least Squares and Finite Element Methods I. Least Squares Formulations and Conjugate Gradient Solution of the Continuous Problem, Comput. Methods Appl. Mech. Engrg., 17/18 (1979), pp. 619–657.

    Article  MathSciNet  Google Scholar 

  3. M. O. Bristeau, R. Glowinski, J. Periaux, P. Perrier, O. Pironneau and G. Poirier, Application of Optimal Control and Finite Element Methods to the Calculation of Transonic Flows and Incompressible Flows, in Numerical Methods in Applied Fluid Dynamics, B. Hunt (Ed.), Academic Press, New York (1980), 203–312.

    Google Scholar 

  4. S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, in Grundlehren der mathematischen Wissenschaften 251, Springer-Verlag, New York-Heidelberg-Berlin (1982).

    Google Scholar 

  5. J. D. Cole and A. F. Messiter, Expansion Procedures and Similarity Laws for Transonic Flow, ZAMP, 8, 1–25 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. D. Cole and L. P. Cook, Transsonic Aerodynamics, North Holland Series in Applied Mathematics and Mechanics 30, North-Holland, Amsterdam (1986).

    Google Scholar 

  7. C. C. Conley and J. A. Smoller, Viscosity Matrices for Two-dimensional Hyperbolic Systems, Commun. Pure Appl. Math, 23, 867–884 (1970).

    Article  MathSciNet  Google Scholar 

  8. C. C. Conley and J. A. Smoller, Shock Waves as Limits of Progressive Wave Solutions of Higher Order Equations, Commun. Pure Appl. Math, 24, 459–472 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. C. Conley and J. A. Smoller, Shock Waves as Limits of Progressive Wave Solutions of Higher Order Equations II, Commun. Pure Appl. Math, 25, 133–146 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience Publishers, New York (1962).

    MATH  Google Scholar 

  11. C. M. Dafermos, The Entropy Rate Admissibility Criterion for Solutions of Hyperbolic Conservation Laws, J. Diff. Eq., 14 (1973), pp. 202–212.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. M. Dafermos, Hyperbolic Systems of Conservation Laws, in J.M. Ball (Ed.), Reidel-Publ., Doordrecht (1983), 25–70.

    Google Scholar 

  13. R. J. DiPerna, Compensated Compactness and General Systems of Conservation Laws, Trans. Am. Math. Soc., 292, 383–420 (1985).

    Article  MathSciNet  Google Scholar 

  14. M. Feistauer and J. Nečas, On the Solvability of Transonic Potential Flow Problems, Z. Anal. Anw., 4, 305–329 (1985).

    MATH  Google Scholar 

  15. I. M. Gel’fand, Some Problems in the Theory of Quasilinear Equations, Usp. Math. Nauk., 14 (1959), pp. 87–158;

    MATH  Google Scholar 

  16. I. M. Gel’fand, Engl, transi, in Amer. Math. Soc. Trans. Ser. 2, 29, 295–381 (1963).

    Google Scholar 

  17. D. Gilbarg, The existence and Emit behavior of the one-dimensional shock layer, Amer. J. Math., 7, pp. 256–274 (1951).

    Article  MathSciNet  Google Scholar 

  18. R. Glowinski and O. Pironneau, On the Computation of Transonic Flows, in Functional Analysis and Numerical Analysis, H. Fujita (Ed.), Jap. Soc. Prom. Sci., Tokyo-Kyoto (1978) 143–173.

    Google Scholar 

  19. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Field, Springer-Verlag, New York (1983).

    Google Scholar 

  20. H. Hattori, The Riemann Problem for a van der Waais Fluid with Entropy Rate Admissibility Criterion — Isothermal Case, Arch. Rat. Mech. Anal., 92, pp. 247–263 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  21. W. D. Hayes, La seconde approximation pour les écoulements transsoniques non visqueux, Journal de Mécanique, 5 (1966), pp. 163–206.

    MathSciNet  Google Scholar 

  22. H. Holden, On the Riemann Problem for a Prototype of a Mixed Type Conservation Laws, Comm. Pure Appl. Math., 25, pp. 229–264, (1987).

    Article  MathSciNet  Google Scholar 

  23. L. Hsiao, Admissible weak solution for nonlinear system of conservation laws in mixed type, J. PDE (to appear).

    Google Scholar 

  24. L. Hsiao and P. De Mottoni, Existence and Uniqueness of Riemann Problem for Nonlinear System of Conservation Laws of Mixed Type, Trans. AMS (to appear).

    Google Scholar 

  25. R. D. James, The Propagation of Phase Boundaries in Elastic Bars, Arch. Rat. Mech. Anal., 73 (1980).

    Google Scholar 

  26. B. L. Keyfitz, Change of type in three-phase flow: a simple analogue, J. Diff. Eq. (to appear).

    Google Scholar 

  27. B. L. Keyfitz, Admissibility conditions for shocks in conservation laws that change type, in Problems involving change of type, K. Kirchgässner (Ed.), Lecture Notes in Mathematics, Springer-Verlag, to appear.

    Google Scholar 

  28. S. N. Kružkov, First Order Quasilinear Equations in Several Independent Variables, Math. USSR Sbornik, 10 (1970), pp. 217–243.

    Article  Google Scholar 

  29. L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Physik VI — Hydrodynamik, Akademie Verlag, Berlin, 1981.

    Google Scholar 

  30. P. D. Lax, Hyperbolic Systems of Conservation Laws II, Comm. Pure Appl. Math., 10, 537–566 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  31. P. D. Lax, Shock Waves and Entropy, in Contr. to Nonlinear Analysis, Zarantonello (Ed.), Academic Press, New York-London (1971) 603–634.

    Google Scholar 

  32. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, in Regional Conference Series in Applied Mathematics, Soc. for Indust. and Appl. Math., Philadelphia (1972).

    Google Scholar 

  33. L. Leibovich, Solutions of the Riemann Problem for Hyperbolic Systems of Quasilinear Equations without Convexity Conditions, J. Math. Anal. Appl., 1974, pp. 81–90.

    Google Scholar 

  34. T.-P. Liu, The Riemann Problem for general 2 × 2 Conservation Laws, Trans. Amer. Math. Soc, 199, 89–112 (1974).

    MathSciNet  MATH  Google Scholar 

  35. T.-P. Liu, The Entropy Condition and the Admissibility of Shocks, J. Math. Anal. Appl., 53, 78–88 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. S. Mock, Discrete Shocks and Genuine Nonlinearity, Michigan Math. J., 25, pp. 131–146 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. S. Mock, Systems of Conservation Laws of Mixed Type, J. Diff. Equat., 37 (1980), pp. 70–88.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Nečas, Entropy Compactißcation of the Transonic Flow, Manuscript, Charles University, Praha.

    Google Scholar 

  39. J. Nečas, Compacite par Entropie et Ecoulements de Fluides, Lecture Notes Université de Charles et E.N.S, Paris (1985).

    Google Scholar 

  40. O. A. Oleǐnik, Uniqueness and Stability of the Generalized Solution of the Cauchy Problem for a Quasi-Linear Equation, Am. Math. Soc. Transi. Ser. 2, 33, 285–290 (1963).

    Google Scholar 

  41. K. Oswatitsch, Grundlagen der Gasdynamik, Springer-Verlag, Wien-New York (1976).

    MATH  Google Scholar 

  42. K. Oswatitsch, Spezialgebiete der Gasdynamik, Springer-Verlag, Wien-New York, (1977).

    MATH  Google Scholar 

  43. R. L. Pego, Phase Transitions in One-Dimensional Nonlinear Viscoelasticity: Admissibility and Stability, Arch. Rat. Mech. Anal., 97 (1987), pp. 353–394.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Shearer, The Riemann Problem for a Class of Conservation Laws of Mixed Type, J. Diff. Eq., 46 (1982), pp. 426–443.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Slemrod, An Admissibility Criterion for Fluids Exhibiting Phase Transitions, in Systems of Nonlinear Partial Differential Equations, J. M. Ball (Ed.), Reidel-Publ., Doordrecht (1983) 423–432.

    Google Scholar 

  46. M. Slemrod, Admissibility Criteria for Propagating Phase Boundaries in a van der Waals Fluid, Arch. Rat. Mech. and Anal., 81 (1983), pp. 301–315.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Slemrod, Interrelationships among Mechanics, Numerical Analysis, Compensated Compactness, and Oscillation Theory, in Oscillation Theory, Computation, and Methods of Compensated Compactness, C. Dafermos, J. L. Ericksen, D. Kinderlehrer and M. Slemrod (Eds.), Springer-Verlag, New York-Berlin-Heidelberg (1986).

    Google Scholar 

  48. M. Slemrod, Admissibility Criteria for Phase Boundaries, in Nonlinear Hyperbolic Problems, C. Carasso, P.-A. Raviart and D. Serre (Eds.), Lecture Notes in Mathematics 1270, Springer-Verlag, Heidelberg (1987).

    Google Scholar 

  49. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren der mathematischen Wissenschaften 258, Springer-Verlag, New York-Heidelberg-Berlin (1983).

    Google Scholar 

  50. B. Wendroff, The Riemann Problem for Materials with Nonconvex Equations of State I: Isentropic Flow, J. Math. Anal. Appl., 38 (1972), pp. 445–466.

    Google Scholar 

  51. H. Weyl, Shock Waves in Arbitrary Fluids, Commun. Pure Appl. Math., 2 (1949), pp. 103–122.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Zierep, Theoretische Gasdynamik, Braun, Karlsruhe (1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Warnecke, G. (1990). Admissibility of Solutions to the Riemann Problem for Systems of Mixed Type. In: Keyfitz, B.L., Shearer, M. (eds) Nonlinear Evolution Equations That Change Type. The IMA Volumes in Mathematics and Its Applications, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9049-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9049-7_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9051-0

  • Online ISBN: 978-1-4613-9049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics