Skip to main content

Bloch and normal functions on general planar regions

  • Conference paper
Holomorphic Functions and Moduli I

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 10))

Abstract

Let Ω be a hyperbolic region in the complex plane λΩ the density of the hyperbolic metric on Ω Set δΩ (z) = dist(z, ∂Ω); l/δΩ is called the quasihyperbolic density on Ω. Roughly speaking, we show that holomorphic functions cannot distinguish between λΩ and l/δΩ while meromorphic functions sometimes can. More precisely, for a holomorphic function f on Ω the quantities |f′ (z)|/(z)/λΩ (z) and |f′ (z)|δ Ω(z) are both either uniformly bounded on Ω (that is, fis a Bloch function) or unbounded. With the Euclidean derivative |f′| replaced by the spherical derivative f # = | f′|/(1+|f|2), Lehto and Virtanen have observed that the analogous result is generally false. However, we characterize those regions for which there exists a finite constant n = n(Ω) such that f #(zΩ(z) ≤ nf #(zΩ(z)≤ nf # (z)δΩ(z), z ∈ Ω, for any meromorphic function on Ω. In addition, we present another characterization of Bloch functions. A holomorphic function f on Ω is not a Bloch function if and only if there is a sequence {z n} 221En=1 zin Ω and a sequence {ρn} 221En=1 of positive numbers such that ρnΩ (zn) → 0 and f (zn + ρnς) — f(zn) → where |a| = 1, locally uniformly son C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beardon, A.F. and Gehring, F. W., Schwarzian derivatives, the Poincaré metric and the kernel function, Comment. Math. Helv. 55 (1980), 50–64.

    Article  MATH  MathSciNet  Google Scholar 

  2. Beardon, A.F. and Pommerenke, Ch., The Poincaré metric of plane domains, J. London Math. Soc. (2) 18 (1978), 475–483.

    Article  MATH  MathSciNet  Google Scholar 

  3. Campbell, D.M. and Wiekes, G., Characterizations of normal meromorphic functions, Complex Analysis, Joensuu 1978, pp. 5572, Lecture Notes in Math. 747, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  4. Conway, J.B., “Functions of One Complex Variable,” 2nd ed., Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  5. Gehring, F.W. and Osgood, B., Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gehring, F.W. and Palka, B., Quasiconformdly homogeneous domains, J. Analyse Math. 30 (1976), 172–199.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kra, I., “Automorphic Functions and Kleinian Groups,” W.A. Benjamin, Reading, Mass., 1972.

    Google Scholar 

  8. Lehto, O. and Virtanen, K.I., Boundary behaviour and normal meromorphic functions, Acta Math 97 (1957), 47–65.

    Article  MATH  MathSciNet  Google Scholar 

  9. Lohwater, A.J. and Pommerenke, Ch., On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A.I., No. 550 (1973), 12 pp.

    MathSciNet  Google Scholar 

  10. Minda, C.D., Bloch constants, J. Analyse Math. 41 (1982), 54–84.

    Article  MATH  MathSciNet  Google Scholar 

  11. Pommerenke, Ch., Uniformly perfect sets and the Poincaré metric, Arch. Math. 32 (1979), 192–199.

    MATH  MathSciNet  Google Scholar 

  12. Timoney, R.M., A necessary and sufficient condition for Bloch functions, Proc. Amer. Math. Soc. 71 (1978), 263–266.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Minda, D. (1988). Bloch and normal functions on general planar regions. In: Drasin, D., Kra, I., Earle, C.J., Marden, A., Gehring, F.W. (eds) Holomorphic Functions and Moduli I. Mathematical Sciences Research Institute Publications, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9602-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9602-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9604-8

  • Online ISBN: 978-1-4613-9602-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics