Skip to main content

Salinity-Gradient Solar Ponds

  • Chapter
Advances in Solar Energy

Part of the book series: Advances in Solar Energy ((AISE,volume 4))

Abstract

Salinity-gradient solar ponds are of interest as a means for collecting solar energy and storing it as heat for such low-temperature applications as space heating, industrial water heating, and crop drying. Used in such applications, solar ponds may be significantly lower in cost than other solar collectors; and they combine at the same time the capability of long term storage. In favorable sites where conventional fuel costs are unusually high, it is possible to use solar ponds for solar thermal power generation. By far the largest solar ponds operated to date are those at the 5MW peaking power station at the north end of the Dead Sea in Israel. Their intrinsic storage capability distinguishes solar pond power stations from other solar-electric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G.C. (1958), “Some Limnological Features of a Shallow Saline Meromictic Lake,” Limnol. Oceanogr. 3, pp. 259–70.

    Article  Google Scholar 

  2. Assaf, G. (1976), “The Dead Sea: A Scheme for a Solar Lake,” Solar Energy 18, pp. 293–299.

    Article  Google Scholar 

  3. Atkinson, J.F. and Harleman, D.R.F. (1983), “A Wind-Mixed Layer Model for Solar Ponds,” Solar Energy 31, pp. 243–259.

    Article  Google Scholar 

  4. Baines, P.G. and Gill, A.E. (1969), “On Thermohaline Convection With Linear Gradients”, J. Fluid Mech. 37, pp. 289–306.

    Article  Google Scholar 

  5. Bronicki, L., Doron, B., Raviv, A., and Tabor, H. (1984), “Progress in Solar Ponds in Israel,” Proc. Int. Solar Energy Soc. Congress, Perth, Australia (Aug. 1983), 2, pp. 769–773; also Doron, personal communication.

    Google Scholar 

  6. Bryant, H.C. and Colbeck, I. (1977), “Solar Pond for London?,” Solar Energy 19, pp. 321–322.

    Article  Google Scholar 

  7. Chinery, G.T., Siegel, G.R., and Irwin, W.C. (1983), “Gradient Zone Establishment and Maintenance at TVA’s 4000 m2 Nonconvecting Salt Gradient Solar Pond,” Proc. Am. Solar Energy Soc., Minneapolis, MN, (June 1983), pp. 399–404; also Chinery and Irwin, personal communications.

    Google Scholar 

  8. Collares Pereira, M., Joyce, A., and Valle, L. (1984), “A Salt Gradient Solar Pond for Greenhouse Heating Application,” Proc. Int. Solar Energy Soc. Congress, Perth, Australia (Aug. 1983), 2, pp. 1014–1019.

    Google Scholar 

  9. Collins, R. (1984), “Alice Springs Solar Pond Project,” Proc. Int. Solar Energy Soc. Congress, Perth, Australia, (Aug. 1983), 2, 755–779.

    Google Scholar 

  10. Collins, R. (1986), “The Advanced Alice Springs Solar Pond,” Proc. Int. Solar Energy Soc. Congress, Montreal, Canada, (June 1985), 3, pp. 1479–1483.

    Google Scholar 

  11. Davey, T.R.A. (1968), “The Aspendale Solar Pond,” Report TR15, Comm. Sci. and Ind. Res. Org., Div. of Chem. Eng., Australia.

    Google Scholar 

  12. Dickinson, W.C. (1980), “An Economic Methodology for Solar Industrial Process Heat Systems”, Ch. 46 in Solar Energy Technology Handbook, ed. W.C. Dickinson and P.N. Cheremisinoff, pub. Marcel Dekker, New York.

    Google Scholar 

  13. Doron, B. (1987) Personal communication.

    Google Scholar 

  14. Eliseyev, V.N., Usmanov, Y.U., and Teslenko, L.N. (1971), “Theoretical Investigation of the Heat Regime in a Saltwater Solar Pond,” Geliotekhnika (Heliotechnology), 7, pp. 17–23.

    Google Scholar 

  15. Eliseyev, V.N., Usmanov, Y.U., and Umarov, G.Y. (1973), “Determining the Efficiency of a Solar Salt Pond,” Geliotekhnika (Heliotechnology), 9, pp. 44–46.

    Google Scholar 

  16. Engdahl, D.D. (1986), “Los Baños Solar Pond in 1985,” Internal Report, Dept. of Water Resources, State of Calif., Sacramento, CA, (Jan. 1986).

    Google Scholar 

  17. Folchitto, S. (1987), personal communication.

    Google Scholar 

  18. Fynn, R.P., and Short, T.H. (1983), Solar Ponds: A Basic Manual. Special Circular 106, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, (Feb. 1983).

    Google Scholar 

  19. Golding, P., Davey, J.A., MacDonald, R.W.G., Akbarzadeh, A., and Charters, W.W.S. (1984), “Construction and Operation of the Laverton Solar Ponds,” Proc. Int. Solar Energy Soc. Congress, Perth, Australia (Aug. 1983), 2, pp. 1295–1302.

    Google Scholar 

  20. Golding, P. and Nielsen, C.E. (1986), “Gradient Zone Boundary Fluctuation in Solar Ponds,” Proc. Am. Solar Energy Soc., Boulder, CO, (June 1986), pp. 325–328.

    Google Scholar 

  21. Hirschmann, J.R. (1970), “Salt Flats as Solar-Heat Collectors for Industrial Purposes,” Solar Energy 13, pp. 83–97.

    Article  Google Scholar 

  22. Hull, J.R. (1980), “Computer Simulation of Solar Pond Behavior,” Solar Energy 25, pp. 33–40.

    Article  Google Scholar 

  23. Hull, J.R. (1986), “Solar Ponds Using Ammonium Salts,” Solar Energy 36, pp. 551–558.

    Article  Google Scholar 

  24. Hull, J.R., Nielsen, C.E. and Golding, P., Salt Gradient Solar Ponds, to be published by Chemical Rubber Publishing Company.

    Google Scholar 

  25. Hull, J.R., Cha, Y.S., Sha, W.T., and Schertz, W.W. (1982), “Construction and First Year’s Operational Results of the ANL Research Salt Gradient Solar Pond,” Proc. Am Solar Energy Soc., Houston, TX, (June, 1982), 197–202; also Hull, personal communication.

    Google Scholar 

  26. Hull, J.R., Liu, K.V., Cha, Y.S., Sha, W.T., Kamal, J. and Nielsen, C.E. (1984) “Dependence of Ground Heat Loss Upon Solar Pond Size and Perimeter Insulation: Calculated and Experimental Results,” Solar Energy 33, pp. 25–33.

    Article  Google Scholar 

  27. Jain, G.C. (1973) “Heating of Solar Pond,” Proc. Int. Congr.: The Sun in the Service of Mankind, Paris, sponsored by UNESCO and others, Paper EH 61, 10 pp.

    Google Scholar 

  28. Jimbo, S., Okamoto, H., Suzuki, O., Tsuchiya, M., Shinyashiki, A., and Tsuchiya, H. (1987), “Heat Supply System by Salt-Gradient Solar Pond in Northern Cold Climate in Japan,” paper presented at I.I.E. Conference: International Progress in Solar Ponds, Cuernavaca, Mexico, (Mar. 1987).

    Google Scholar 

  29. Kalecsinsky, A. von (1902), “Über die ungarischen warmen und heissen Kochalzseen als natürliche Wärmeaccumulatoren”, Ann. Physik IV, 7, pp. 408–16.

    Article  Google Scholar 

  30. Kamal, J. and Nielsen, C.E. (1982), “Convective Zone Structure and Zone Boundaries in Solar Ponds,” Proc. Am. Solar Energy Soc., Houston, TX, (June 1982) pp. 191–196.

    Google Scholar 

  31. Kooi, C.F. (1979), “The Steady State Salt Gradient Solar Pond,” Solar Energy 23, pp. 37–45.

    Article  Google Scholar 

  32. Kuberg, D.W. (1981), “A Review of TVA’s Nonconvecting Solar Pond Activities,” Proc. Am. Sect. Int. Solar Energy Soc., Philadelphia, PA (May 1981), 4.1, pp. 777–781.

    Google Scholar 

  33. Lesino, G., Saravia, L., Mangussi, J., and Caso, R. (1982), “Operation of a 400 m2 Sodium Sulphate Solar Pond in Salta, Argentina,” International Solar Pond Letters, 1, pp. 12–13; also remarks by Lesino at Montreal, June 1985.

    Google Scholar 

  34. Lick, W. (1965), “The Instability of a Fluid Layer With Time-Dependent Heating,” J. Fluid Mech., 21, pp. 565–576.

    Article  MathSciNet  MATH  Google Scholar 

  35. Melack, J.M. and Kilham, P. (1972), “Lake Mahega: A Mesotrophic, Sulphato-Chloride Lake in Western Uganda,” African Journal of Tropical Hydrobiology and Fisheries, 2, pp. 141–50.

    Google Scholar 

  36. Meyer, K.A., Grimmer, D.P. and Jones, G.F. (1982). “An Experimental and Theoretical Study of Salt-Gradient Pond Interface Behavior,” Proc. Am. Solar Energy Soc., Houston, TX, (June 1982), pp. 185–190.

    Google Scholar 

  37. Nield, D.A. (1967), “The Thermohaline Rayleigh-Jeffreys Problem,” J. Fluid Mech. 29, pp. 545–558.

    Article  Google Scholar 

  38. Nielsen, C.E. (1976), “Experience With a Prototype Solar Pond for Space Heating,” Proc. Joint Conf. American and Canadian Solar Energy Societies, Winnipeg, Canada, (Aug. 1976), 5, pp. 169–182.

    Google Scholar 

  39. Nielsen, C.E. (1979), “Control of Gradient Zone Boundaries,” Proc. Int. Solar Energy Society Congress, Atlanta, GA (May 1979), 2, pp. 1010–14.

    Google Scholar 

  40. Nielsen, C.E. (1980a), “Nonconvective Salt-Gradient Solar Ponds,” Chap. 11 in Solar Energy Technology Handbook, ed. W.C. Dickinson and P.N. Cheremisinoff, pub. Marcel Dekker.

    Google Scholar 

  41. Nielsen, C.E. (1980b), “Design and Initial Operation of a 400 m2 Solar Pond,” Proc. Am. Sect. Int. Solar Energy Soc., Phoenix, AZ, (June 1980), 3.1, pp. 381–385.

    Google Scholar 

  42. Nielsen, C.E. (1982a), “Salt Transport and Gradient Maintenance in Solar Ponds,” Proc. Am. Solar Energy Soc., Houston, TX (June, 1982), pp. 179–184.

    Google Scholar 

  43. Nielsen, C.E. (1982b), “Surface Zone Behavior in Solar Ponds,” Paper No. 82-Wa/Sol-25, Am. Soc. Mech. Eng. Meeting Phoenix, AZ (Nov. 1982).

    Google Scholar 

  44. Nielsen, C.E. (1983), “Experience With Heat Extraction and Zone Boundary Motion,” Proc. Am. Solar Energy Soc., Minneapolis, MN, (June 1983), pp. 405–410.

    Google Scholar 

  45. Nielsen, C.E. (1984), “Practical Zone Boundary Control in Solar Ponds,” Proc Int. Solar Energy Soc., Perth, Australia (Aug. 1983), 2, pp. 780–784.

    Google Scholar 

  46. Nielsen, C.E. and Kamal, J. (1981), “Toward Understanding the Surface Zone in Salinity Gradient Solar Ponds,” Proc. Int. Solar Energy Soc., Brighton, England, (Aug. 1981), 1, pp. 652–655.

    Google Scholar 

  47. Nielsen, C.E. and Rabl, A. (1975), “Operation of a Small Salt Gradient Solar Pond,” Extended Abstracts Int. Solar Energy Soc., Los Angeles, CA (July, 1975), Abstract 35/5, pp. 271–272.

    Google Scholar 

  48. Nielsen, C.E., Rabl, A., Watson, J. and Weiler, P. (1977), “Flow System for Maintenance of Salt Concentration Gradient in Solar Ponds,” Solar Energy 19, pp. 763–766.

    Article  Google Scholar 

  49. Ochs, T.L., Johnson, S.C., and Sadan, A. (1981), “Application of a Salt Gradient Solar Pond to a Chemical Process Industry,” Proc Am. Sect. Int. Solar Energy Soc., Philadelphia, PA (May 1981), 4.1, pp. 809–811; also Johnson, personal communications, April 1986 and February 1987.

    Google Scholar 

  50. Office of Saline Water (1971), Saline Water Conversion Engineering Data Book, U.S. Department of the Interior, Washington, D.C.

    Google Scholar 

  51. Rabl, A. and Nielsen, C.E. (1975), “Solar Ponds for Space Heating”, Solar Energy 17, pp. 1–12.

    Article  Google Scholar 

  52. Rao, K.S. (1985), personal communication; also unpublished reports and site visits.

    Google Scholar 

  53. Rayleigh, Lord (1916), “On Convection Currents in a Horizontal Layer of Fluid When the Higher Temperature is On The Under Side,” Phil. Mag. (6), 32, pp. 529–546.

    Google Scholar 

  54. Reddy, T.A., Jumpa, S., and Saunier, G.Y. (1986), “Effective Daily Mean Position of the Sun for Solar Ponds,” Solar Energy 37, pp 75–77.

    Article  Google Scholar 

  55. Saulnier, B., Chepurniy, N., Savage, S.B., and Lawand, T.A. (1975), “Field Testing of a Solar Pond,” Extended Abstracts Int. Solar Energy Soc., Los Angeles, CA (July 1975), Abstract 35/1, pp. 263–264.

    Google Scholar 

  56. Schladow, S.G. (1984), “The Upper Mixed Zone of a Salt Gradient Solar Pond: Its Dynamics, Prediction and Control,” Solar Energy, 33, pp. 417–426.

    Article  Google Scholar 

  57. Sewell, M.P., Reid, R.L., Swift, A.H.P. (1986), “Gradient Establishment and Maintenance for a 3355 Square Meter Solar Pond in El Paso, Texas,” Proc. Am. Solar Energy Soc., Boulder, CO (June 1986), pp. 341–344; also Swift, personal communication.

    Google Scholar 

  58. Shirtcliffe, T.G.L. (1969), “An Experimental Investigation of Thermosolutal Convection at Marginal Stability,” J. Fluid Mech., 35, pp. 677–688.

    Article  Google Scholar 

  59. Sissom, L.E. and Pitts, D.R. (1972), Elements of Transport Phenomena, McGraw-Hill, N.Y.

    Google Scholar 

  60. Srinivasan, J. (1985), “Construction and Performance of an Experimental Solar Pond,” Report 85 SP1, Karnataka State Council for Science and Technology (March 1985); also Srinivasan, personal communication.

    Google Scholar 

  61. Tabor, H. (1963), “Large-area Solar Collectors for Power Production,” Solar Energy 7, pp. 189–94.

    Article  Google Scholar 

  62. Tabor, H. (1966), “Solar Ponds,” Science Journal 66 (June 1966), pp.66–71.

    Google Scholar 

  63. Tabor, H. (1975), “Solar Ponds as Heat Source for Low-Temperature Multieffect Distillation Plants,” Desalination 17, pp. 289–302.

    Article  Google Scholar 

  64. Tabor, H. (1981), “Solar Ponds,” Solar Energy, 27, pp. 181–194.

    Article  Google Scholar 

  65. Tabor, H. and Matz, R. (1965), “A Status Report on a Solar Pond Project,” Solar Energy 9, pp. 177–182.

    Article  Google Scholar 

  66. Usmanov, Y.U., Eliseyev, V.N. and Umarov, G.Y. (1971), “Experimental Investigation of the Heat Regime in a Saltwater Solar Pond,” Geliotekhnika (Heliotechnology), 7, pp. 24–28.

    Google Scholar 

  67. Usmanov, Y.U., Umarov, G.Y. and Zakhidov, R.A. (1969), “Salt Ponds as Accumulators of Solar Energy,” Geliotekhnika (Heliotechnology), 5, pp. 49–55.

    Google Scholar 

  68. Venegas, C., Becerra, H.R., Huacuz, J.M., Lombana, A., (1987), “The IIE Salt Gradient Solar Pond,” paper presented at IIE Conference: International Progress in Solar Ponds, Cuernavaca, Mexico, (Mar. 1987).

    Google Scholar 

  69. Walton, I.C. (1982), “Double-diffusive Convection With Large Variable Gradients,” J. Fluid Mech. 125, pp. 123–135.

    Article  MathSciNet  MATH  Google Scholar 

  70. Weinberger, H. (1964), “The Physics of the Solar Pond,” Solar Energy 8, pp. 45–56.

    Article  Google Scholar 

  71. Whitehead, J.A. and Chen, M.M. (1970), “Thermal Instability and Convection of a Thin Fluid Layer Bounded by a Stably Stratified Region,” J. Fluid Mech. 40, pp. 549–576.

    Article  Google Scholar 

  72. Wilson, A.T. and Wellman, H.W. (1962), “Lake Vanda: An Antarctic Lake,” Nature (London), 196, pp. 1171–3.

    Article  Google Scholar 

  73. Witte, M.J. and Newell, T.A. (1985), “A Thermal Burst Model for the Prediction of Erosion and Growth Rates of a Diffusive Interface,” ASME Paper No. 85-HT-31, 8 pp.

    Google Scholar 

  74. Wittenberg, L.J., and Etter, D.E. (1982), “Heat Extraction from a Large Solar Pond,” Am. Soc. of Mech. Engineers Paper 82-WA/Sol-31; also Tim Leiwig personal communication.

    Google Scholar 

  75. Yeh, H., Lin, J.Y., Lin, G.W., Liu, K.V. (1987), “Design Operation and Thermal Performance of Small-Scale Experimental Salt Gradient Solar Pond in Taiwan,” paper submitted to IIE Conference: International Progress in Solar Ponds, Cuernavaca, Mexico (Mar. 1987).

    Google Scholar 

  76. Zangrando, F. (1979), “Observation and Analysis of a Full-Scale Experimental Salt Gradient Solar Pond,” Ph.D. Dissertation, University of New Mexico, Albuquerque, 131 pp.

    Google Scholar 

  77. Zangrando, F. (1980), “A Simple Method to Establish Salt Gradient Solar Ponds,” Solar Energy 25, pp. 467–470.

    Article  Google Scholar 

  78. Zangrando, F. and Bertram, L.A. (1985), “The Effect of Variable Stratification on Linear Doubly Diffusive Stability,” J. Fluid Mech. 151, pp 55–79.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Nielsen, C.E. (1988). Salinity-Gradient Solar Ponds. In: Böer, K.W. (eds) Advances in Solar Energy. Advances in Solar Energy, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9945-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9945-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9947-6

  • Online ISBN: 978-1-4613-9945-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics