Skip to main content

Using Augmentation Techniques for Performance Evaluation in Automotive Safety

  • Chapter
  • First Online:
Handbook of Augmented Reality

Abstract

This chapter describes a framework which uses augmentation techniques for performance evaluation of mobile computer vision systems. Computer vision systems use primarily image data to interpret the surrounding world, e.g. to detect, classify and track objects. The performance of mobile computer vision systems acting in unknown environments is inherently difficult to evaluate since, often, obtaining ground truth data is problematic. The proposed novel framework exploits the possibility to add new agents into a real data sequence collected in an unknown environment, thus making it possible to efficiently create augmented data sequences, including ground truth, to be used for performance evaluation. Varying the content in the data sequence by adding different agents or changing the behavior of an agent is straightforward, making the proposed framework very flexible. A key driver for using augmentation techniques to address computer vision performance is that the vision system output may be sensitive to the background data content. The method has been implemented and tested on a pedestrian detection system used for automotive collision avoidance. Results show that the method has potential to replace and complement physical testing, for instance by creating collision scenarios, which are difficult to test in reality, in particular in a real traffic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson Technologies LLC. SynthEyes. http://www.ssontech.com/, June 2011.

  2. Autodesk. Autodesk 3ds Max 2008. http://usa.autodesk.com/, June 2011.

  3. aXYZ design. Metropoly 3D Humans. http://www.axyz-design.com/, June 2011.

  4. P. Baiget, X. Roca, and J. Gonzalez. Autonomous virtual agents for performance evaluation of tracking algorithms. Articulated Motion and Deformable Objects. 5th International Conference, AMDO 2008, pages 299–308, Berlin, Germany, 2008. Springer-Verlag.

    Google Scholar 

  5. M. Brannstrom, E. Coelingh, and J. Sjoberg. Threat assessment for avoiding collisions with turning vehicles. 2009 IEEE Intelligent Vehicles Symposium (IV), pages 663–668, Piscataway, NJ, USA, 2009.

    Google Scholar 

  6. W. Burger, M. J. Barth, and W. Strzlinger. Immersive simulation for computer vision. In K. Solina, editor, joint 19th AGM and 1st SDRV workshop Visual Modules, pages 160–168, Maribor, Slovenia, 1995. Oldenbourg Press.

    Google Scholar 

  7. D. Chekhlov, A. Ge, A. Calway, and W. Mayol-Cuevas. Ninja on a plane: Automatic discovery of physical planes for augmented reality using visual slam. In International Symposium on Mixed and Augmented Reality (ISMAR), 2007.

    Google Scholar 

  8. H. Christensen and W. Förstner. Performance characteristics of vision algorithms. Machine Vision and Applications, (9):215–218, 1997.

    Google Scholar 

  9. E. Coelingh, H. Lind, W. Birk, and D. Wetterberg. Collision warning with auto brake. In FISITA World Congress, F2006VI30, 2006.

    Google Scholar 

  10. L. Danielsson. Tracking and radar sensor modelling for automotive safety systems. PhD thesis, Chalmers University of Technology, 2010.

    Google Scholar 

  11. Delphi Corporation. Cwm2 resimulator, 2008.

    Google Scholar 

  12. Digilab. Voodoo Camera Tracker. University of Hannover, http://www.digilab.uni-hannover.de/docs/manual.html, June 2011.

  13. L. France, A. Girault, J.-D. Gascuel, and B. Espiau. Sensor modeling for a walking robot simulation. In Eurographics Workshop on Computer Animation and Simulation, Sep 1999.

    Google Scholar 

  14. A. Fusiello. Uncalibrated euclidean reconstruction: a review. Image and Vision Computing, 18:555–563, 2000.

    Article  Google Scholar 

  15. D. M. Gavrila and V. Philomin. Real-time object detection for ‘smart’ vehicles. In Proceedings of the IEEE International Conference on Computer Vision, volume 1, pages 87–93, 1999.

    Google Scholar 

  16. A. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann, 1st edition, 1995.

    Google Scholar 

  17. R. Haralick. Computer vision theory: The lack thereof. Computer Vision, Graphics, and Image Processing, (36):372–386, 1986.

    Google Scholar 

  18. R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge University Press, Cambridge, 2003. 2nd ed.

    Google Scholar 

  19. K. Jacobs, J.-D. Nahmias, C. Angus, A. Reche, C. Loscos, and A. Steed. Automatic generation of consistent shadows for augmented reality. In GI ’05: Proceedings of Graphics Interface 2005, pages 113–120, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 2005. Canadian Human-Computer Communications Society.

    Google Scholar 

  20. T. Jain and R. Binford. Ignorance, myopia, and naivet in computer vision systems. CVGIP: Image Understanding, 1991.

    Google Scholar 

  21. J. Jansson. Collision Avoidance Theory with Application to Automotive Collision Mitigation. Dissertation No 950, Dept. of Electrical Enginering, Linköping University, Linköping, 2005.

    Google Scholar 

  22. D. J. LeBlanc, G. E. Johnson, P. J. T. Venhovens, G. Gerber, R. DeSonia, R. D. Ervin, C. F. Lin, A. G. Ulsoy, and T. E. Pilutti. Capc: A road-departure prevention system. IEEE Control Systems Magazine, 16(6):61–71, 1996.

    Article  Google Scholar 

  23. K. Lee and H.Peng. Evaluation of automotive forward collision warning and collision avoidance algorithms. Vehicle System Dynamics, 43(10):735–751, October 2005.

    Article  Google Scholar 

  24. M. Lindman, A. Ödblom, E. Bergvall, A. Eidehall, B. Svanberg, and T. Lukaszewicz. Benefit estimation model for pedestrian auto brake functionality. In Proceedings of the 4th International Conference Expert Symposium on Accident Research, Hannover, Germany, September 2010.

    Google Scholar 

  25. Q.-T. Luong and O. D. Faugeras. Camera calibration, scene motion and structure recovery from point correspondences and fundamental matrices. IJCV, 22:261–289, 1997.

    Article  Google Scholar 

  26. P. Mikulastik, H. Broszio, T. Thormaehlen, and O. Urfalioglu. Error analysis of feature based disparity estimation. In First Pacific Rim Symposium on Advances in Image and Video Technology, volume 0, pages 1–12, dez 2006. ISSN 0302-9743, ISBN 978-3-540-68297-4.

    Google Scholar 

  27. N. J. Mitra and A. Nguyen. Estimating surface normals in noisy point cloud data. In SCG ’03: Proceedings of the nineteenth annual symposium on Computational geometry, pages 322–328, New York, NY, USA, 2003. ACM.

    Google Scholar 

  28. J. Nilsson and A. Ödblom. On worst case performance of collision avoidance systems. In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, California, USA, 2010.

    Google Scholar 

  29. P. Olsson. Testing and verification of adaptive cruise control and collision warning with brake support by using hil simulations. SAE 2008-01-0728, 2008.

    Google Scholar 

  30. Z. Papp, K. Labibes, A. Thean, and M. van Elk. Multi-agent based hil simulator with high fidelity virtual sensors. In Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, pages 213 – 218, 2003.

    Google Scholar 

  31. K. Pimentel and K. Teixeira. Virtual Reality: Through the New Looking Glass. McGraw-Hill, 2nd edition, 1995.

    Google Scholar 

  32. Pixel Farm. PFTrack. http://www.thepixelfarm.co.uk/, June 2011.

  33. J. Pohl, W. Birk, and L. Westervall. A driver-distraction-based lane-keeping assistance system. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 221(4):541–552, 2007.

    Article  Google Scholar 

  34. F. Z. Qureshi and D. Terzopoulos. Towards intelligent camera networks: a virtual vision approach. In Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 2nd Joint IEEE International Workshop on, pages 177–184, 2005.

    Google Scholar 

  35. A. Santuari, O. Lanz, and R. Brunelli. Synthetic movies for computer vision applications. Proceedings of the 3rd IASTED International Conference: Visualization, Imaging, and Image Processing (VHP 2003), 1:1–6, 2003.

    Google Scholar 

  36. Scenespector Systems. VooCAT. http://www.scenespector.com/, June 2011.

  37. Science-D-Visions. 3D-Equalizer. http://www.sci-d-vis.com/, June 2011.

  38. T. Thormählen, H. Broszio, and P. Mikulastik. Robust linear auto-calibration of a moving camera from image sequences. In Proceedings of the 7th Asian Conference on Computer Vision (ACCV), Hyderabad, India, Springer, LNCS 3852, Part II, ISSN 0302-9743, volume 0, jan 2006.

    Google Scholar 

Download references

Acknowledgements

Financial supports from the Swedish Automotive Research Program (FFP contract Dnr 2007-01733 and FFI contract Dnr 2008-04110 at VINNOVA) and the Vehicle and Traffic Safety Centre (SAFER) are gratefully acknowledged. Furthermore, the authors wish to thank Gunnar Bergström and Henrik Moren at Xdin, Gothenburg, Sweden, for initial discussions on augmented reality techniques, and Robert Jacobson at VCC for 3ds Max support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nilsson, J., Ödblom, A.C.E., Fredriksson, J., Zafar, A. (2011). Using Augmentation Techniques for Performance Evaluation in Automotive Safety. In: Furht, B. (eds) Handbook of Augmented Reality. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0064-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0064-6_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0063-9

  • Online ISBN: 978-1-4614-0064-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics