Skip to main content

Kernel Semi-Supervised Learning-Based Face Recognition

  • Chapter
  • First Online:
Kernel Learning Algorithms for Face Recognition

Abstract

Semi-supervised learning methods attempt to improve the performance of a supervised or an unsupervised learning in the presence of side information. This side information can be in the form of unlabeled samples in the supervised case or pairwise constraints in the unsupervised case

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17(11):1529–1541

    Article  Google Scholar 

  2. Zhou Z (2007) The co-training paradigm in semi-supervised learning. Machine learning and applications. Tsinghua University Press, Beijing, 259–275 (in Chinese)

    Google Scholar 

  3. Zhou Z (2008) Semi-supervised learning by disagreement. Proceedings of the 4th conference on granular computing. Wiley-IEEE Press, Hoboken

    Google Scholar 

  4. Blum A, Mitchell T (1998) Combining labeled and unlabeled data wit h co-training. Proceedings of the 11th annual conference on computational learning theory. ACM, New York, pp 92–100

    Google Scholar 

  5. Chapelle O, Zien A (2005) Semi-supervised classification by low density separation. Proceedings of the 10th international workshop on artificial intelligence and statistics. Pascal Press, Savannah, Barbados, pp 245–250

    Google Scholar 

  6. Zhou D, Bousquet O, Thomas N (2003) Learning with local and global consistency. Max Planck Institute for Biological Cybernetics, pp 154–157

    Google Scholar 

  7. Xing EP, Jordan MI, Russell S (2003) Distance metric learning with application to clustering with side-information. Advance in neural information processing systems, MIT Press, Cambridge, pp 505–512

    Google Scholar 

  8. Tang W, Zhong S (2006) Pairwise constraints-guided dimensionality reduction. Proceedings of data mining workshop on feature selection for data mining. pp 59–66

    Google Scholar 

  9. Yeung DY, Chang H (2006) Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recogn 39(5):1007–1010

    Article  MATH  Google Scholar 

  10. Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans Syst, Man and Cybernetics-Part A, 37(6):1088–1098

    Google Scholar 

  11. Zhou ZH, Chen KJ, Dai HB (2006) Enhancing relevance feedback in image retrieval using unlabeled data. ACM Trans Inf Syst 24(2):219–244

    Article  Google Scholar 

  12. Steedman M, Osborne M, Sarkar A (2003) Bootstrapping statistical parsers from small datasets. Proceedings of the 11th conference on the european chapter of the association for computational linguistics, 331–338

    Google Scholar 

  13. Huang J, Yuen P, Chen WS, Lai JH (2004) Kernel subspace LDA with optimized kernel parameters on face recognition. Proceedings of the sixth IEEE international conference on automatic face and gesture recognition, pp 1352–1355

    Google Scholar 

  14. Wang L, Chan KL, Xue P (2005) A criterion for optimizing kernel parameters in KBDA for image retrieval. IEEE Trans Syst, Man and Cybern-Part B: Cybern 35(3):556–562

    Article  Google Scholar 

  15. Chen WS, Yuen P, Huang J, Dai DQ (2005) Kernel machine-based one-parameter regularized fisher discriminant method for face recognition. IEEE Trans Syst, Man and Cybern-Part B: Cybern 35(4):658–669

    Google Scholar 

  16. Xiong HL, Swamy MN, Ahmad M (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Networks 16(2):460–474

    Article  Google Scholar 

  17. Charles A, Massimiliano P (2005) Learning the kernel function via regularization. J Machine Learn Res 6:1099–1125

    MATH  Google Scholar 

  18. Lin Y–Y, Liu T-L, Fuh C-S (2011) Multiple kernel learning for dimensionality reduction. IEEE Trans Pattern Anal Machine Intell 33(6):1147–1160

    Article  Google Scholar 

  19. Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  20. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  21. He X, Niyogi P (2003) Locality preserving projections, advances in neural information processing systems. MIT Press, Cambridge

    Google Scholar 

  22. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Machine Intell 29(1):40–51

    Article  Google Scholar 

  23. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. Proc IEEE Conf Comput Vision and Pattern Recognition, pp 846–853

    Google Scholar 

  24. Cai D, He X, Han J (2007) Semi-supervised discriminant analysis, Proc IEEE Int’l Conf Computer Vision

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Bao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, JB., Chu, SC., Pan, JS. (2014). Kernel Semi-Supervised Learning-Based Face Recognition. In: Kernel Learning Algorithms for Face Recognition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0161-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0161-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0160-5

  • Online ISBN: 978-1-4614-0161-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics